Combined p19Arf and interferon-beta gene transfer enhances cell death of B16 melanoma in vitro and in vivo

Carregando...
Imagem de Miniatura
Citações na Scopus
21
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Citação
CANCER GENE THERAPY, v.20, n.5, p.317-325, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Approximately 90% of melanomas retain wild-type p53, a characteristic that may help shape the development of novel treatment strategies. Here, we employed an adenoviral vector where transgene expression is,controlled by p53 to deliver the p19 alternate reading frame (An) and interferon-beta (IFN beta) complementary DNAs in the B16 mouse model of melanoma. In vitro, cell death was enhanced by combined gene transfer (63.82 +/- 15.30% sub-GO cells); yet introduction of a single gene resulted in significantly fewer hypoploid cells (37.73 +/- 7.3% or 36.96 +/- 11.58%, p19Arf or IFN beta, respectively, P < 0.05). Annexin V staining and caspase-3 cleavage indicate a cell death mechanism consistent with apoptosis. Using reverse transcriptase quantitative PCR, we show that key transcriptional targets of p53 were upregulated in the presence of p19Arf, although treatment with IFN beta did not alter expression of the genes studied. In situ gene therapy revealed significant inhibition of subcutaneous tumors by IFN beta (571 +/- 25 mm(3)) or the combination of p19Arf and IFN beta (489 +/- 124 mm(3)) as compared with the LacZ control (1875 +/- 33 mm(3), P < 0.001); whereas p19Arf yielded an intermediate result (1053 +/- 169 mm(3), P < 0.01 vs control). However, only the combination was associated with increased cell death and prolonged survival (P < 0.01). As shown here, the combined transfer of p19Arf and IFN beta using p53-responsive vectors enhanced cell death both in vitro and in vivo.
Palavras-chave
p53, p14Arf/p19Arf, interferon, melanoma, adenovirus, cell death
Referências
  1. Alizadeh H, 2003, INVEST OPHTH VIS SCI, V44, P3042, DOI 10.1167/iovs.02-1147
  2. Ambjorn M, 2012, AUTOPHAGY, V9, P3
  3. Amos CI, 2011, HUM MOL GENET, V20, P5012, DOI 10.1093/hmg/ddr415
  4. Bajgelman MC, 2008, VIROLOGY, V371, P8, DOI 10.1016/j.virol.2007.11.015
  5. Biron CA, 2001, IMMUNITY, V14, P661, DOI 10.1016/S1074-7613(01)00154-6
  6. Biron CA, 1999, ANNU REV IMMUNOL, V17, P189, DOI 10.1146/annurev.immunol.17.1.189
  7. Bishop DT, 2002, J NATL CANCER I, V94, P894
  8. Clemens MJ, 2003, J INTERF CYTOK RES, V23, P277, DOI 10.1089/107999003766628124
  9. Diamond MS, 2011, J EXP MED, V208, P1989, DOI 10.1084/jem.20101158
  10. Dickson PV, 2007, MOL CANCER RES, V5, P531, DOI 10.1158/1541-7786.MCR-06-0259
  11. Einhorn S, 1996, J INTERF CYTOK RES, V16, P275, DOI 10.1089/jir.1996.16.275
  12. Ekmekcioglu S, 2008, CYTOKINE, V43, P34, DOI 10.1016/j.cyto.2008.04.010
  13. Freedberg DE, 2008, J NATL CANCER I, V100, P784, DOI 10.1093/jnci/djn157
  14. Fujimura T, 2011, J DERMATOL SCI, V62, P107, DOI 10.1016/j.jdermsci.2011.02.002
  15. Garbe C, 2011, ONCOLOGIST, V16, P5, DOI 10.1634/theoncologist.2010-0190
  16. Garcia MA, 2006, EMBO J, V25, P4284, DOI 10.1038/sj.emboj.7601302
  17. GHATTAS IR, 1991, MOL CELL BIOL, V11, P5848
  18. Giglia-Mari G, 2003, HUM MUTAT, V21, P217, DOI 10.1002/humu.10179
  19. Kubo H, 2008, ARCH DERMATOL RES, V300, P297, DOI 10.1007/s00403-008-0841-6
  20. Leon RP, 1998, P NATL ACAD SCI USA, V95, P13159, DOI 10.1073/pnas.95.22.13159
  21. LOKSHIN A, 1995, J NATL CANCER I, V87, P206, DOI 10.1093/jnci/87.3.206
  22. Lu WX, 1999, CANCER RES, V59, P5202
  23. Merkel CA, 2010, BMC CANCER, V10, DOI 10.1186/1471-2407-10-316
  24. Mizuguchi H, 2002, GENE, V285, P69, DOI 10.1016/S0378-1119(02)00410-9
  25. Pomerantz J, 1998, CELL, V92, P713, DOI 10.1016/S0092-8674(00)81400-2
  26. Qin XQ, 1997, J INTERF CYTOK RES, V17, P355, DOI 10.1089/jir.1997.17.355
  27. Ravnan MC, 2012, CLIN THER, V34, P1474, DOI 10.1016/j.clinthera.2012.06.009
  28. Roos WP, 2011, CANCER RES, V71, P4150, DOI 10.1158/0008-5472.CAN-10-3498
  29. Salmon P, 1996, J INTERF CYTOK RES, V16, P759, DOI 10.1089/jir.1996.16.759
  30. Sandoval R, 2004, J BIOL CHEM, V279, P32275, DOI 10.1074/jbc.M313830200
  31. SARNA GP, 1987, J BIOL RESP MODIF, V6, P375
  32. Sato M, 2001, CYTOKINE GROWTH F R, V12, P133, DOI 10.1016/S1359-6101(00)00032-0
  33. SCHILLER JH, 1988, J INTERFERON RES, V8, P581, DOI 10.1089/jir.1988.8.581
  34. Sherr CJ, 2006, NAT REV CANCER, V6, P663, DOI 10.1038/nrc1954
  35. SPEAR GT, 1987, CLIN EXP IMMUNOL, V69, P107
  36. Strauss BE, 2004, VIROLOGY, V321, P165, DOI 10.1016/j.virol.2003.12.021
  37. Strauss BE, 2005, CANCER GENE THER, V12, P935, DOI 10.1038/sj.cgt.7700846
  38. Takaoka A, 2003, NATURE, V424, P516, DOI 10.1038/nature01850
  39. Tao WK, 1999, P NATL ACAD SCI USA, V96, P6937, DOI 10.1073/pnas.96.12.6937
  40. Tao WK, 1999, P NATL ACAD SCI USA, V96, P3077, DOI 10.1073/pnas.96.6.3077
  41. Wakabayashi T, 2008, J GENE MED, V10, P329, DOI 10.1002/jgm.1160
  42. Wilderman MJ, 2005, CANCER RES, V65, P8379, DOI 10.1158/0008-5472.CAN-05-0920
  43. Xiao HB, 2012, GENE THER, V19, P1030, DOI 10.1038/gt.2011.171
  44. Xie KP, 1997, CLIN CANCER RES, V3, P2283
  45. Yamashita M, 2007, INT J CANCER, V121, P1690, DOI 10.1002/ijc.22852
  46. Yoshida J, 2004, CANCER SCI, V95, P858, DOI 10.1111/j.1349-7006.2004.tb02194.x
  47. Yoshida J, 2004, HUM GENE THER, V15, P77, DOI 10.1089/10430340460732472
  48. Zhang FH, 2002, CLIN CANCER RES, V8, P2942
  49. Zhang FL, 2009, IMMUNOLOGY, V128, pe905, DOI 10.1111/j.1365-2567.2009.03104.x
  50. Zhang YP, 1998, CELL, V92, P725, DOI 10.1016/S0092-8674(00)81401-4