Selective Vulnerability of Brainstem Nuclei in Distinct Tauopathies: A Postmortem Study

Carregando...
Imagem de Miniatura
Citações na Scopus
37
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS INC
Autores
ESER, Rana A.
EHRENBERG, Alexander J.
PETERSEN, Cathrine
DUNLOP, Sara
MEJIA, Maria B.
WALSH, Christine M.
RAJANA, Hima
OH, Jun
THEOFILAS, Panos
Citação
JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, v.77, n.2, p.149-161, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The brainstem nuclei of the reticular formation (RF) are critical for regulating homeostasis, behavior, and cognition. RF degenerates in tauopathies including Alzheimer disease (AD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). Although the burden of phopho-tau inclusion is high across these diseases, suggesting a similar vulnerability pattern, a distinct RF-associated clinical phenotype in these diseases indicates the opposite. To compare patterns of RF selective vulnerability to tauopathies, we analyzed 5 RF nuclei in tissue from 14 AD, 14 CBD, 10 PSP, and 3 control cases. Multidimensional quantitative analysis unraveled discernable differences on how these nuclei are vulnerable to AD, CBD, and PSP. For instance, PSP and CBD accrued more tau inclusions than AD in locus coeruleus, suggesting a lower vulnerability to AD. However, locus coeruleus neuronal loss in AD was so extreme that few neurons remained to develop aggregates. Likewise, tau burden in gigantocellular nucleus was low in AD and high in PSP, but few GABAergic neurons were present in AD. This challenges the hypothesis that gigantocellular nucleus neuronal loss underlies REM behavioral disorders because REM behavioral disorders rarely manifests in AD. This study provides foundation for characterizing the clinical consequences of RF degeneration in tauopathies and guiding customized treatment.
Palavras-chave
Alzheimer disease, Corticobasal degeneration, Human brainstem, Progressive supranuclear palsy, Reticular formation, Selective vulnerability, Tauopathies
Referências
  1. Andrade-Moraes CH, 2013, BRAIN, V136, P3738, DOI 10.1093/brain/awt273
  2. Arai T, 2001, ACTA NEUROPATHOL, V101, P167
  3. ARENDT T, 1995, J COMP NEUROL, V351, P223, DOI 10.1002/cne.903510204
  4. Armstrong MJ, 2013, NEUROLOGY, V80, P496, DOI 10.1212/WNL.0b013e31827f0fd1
  5. ASTONJONES G, 1981, J NEUROSCI, V1, P876
  6. Barroso-Chinea P, 2011, BRAIN STRUCT FUNCT, V216, P319, DOI 10.1007/s00429-011-0317-x
  7. Braak H, 2003, NEUROBIOL AGING, V24, P197, DOI 10.1016/S0197-4580(02)00065-9
  8. Brown RE, 2012, PHYSIOL REV, V92, P1087, DOI 10.1152/physrev.00032.2011
  9. Cairns NJ, 2007, ACTA NEUROPATHOL, V114, P5, DOI 10.1007/s00401-007-0237-2
  10. CARLTON SM, 1985, J COMP NEUROL, V241, P382, DOI 10.1002/cne.902410310
  11. Chalermpalanupap T, 2013, ALZHEIMERS RES THER, V5, DOI 10.1186/alzrt175
  12. Charara A, 1996, J COMP NEUROL, V364, P254
  13. Alho ATD, 2016, BRAIN STRUCT FUNCT, V221, P3393, DOI 10.1007/s00429-015-1108-6
  14. Ehrenberg AJ, 2017, NEUROPATH APPL NEURO, V43, P393, DOI 10.1111/nan.12387
  15. Espinoza M, 2008, J ALZHEIMERS DIS, V14, P1
  16. FORD B, 1995, J COMP NEUROL, V363, P177, DOI 10.1002/cne.903630203
  17. Fuller PM, 2007, J PHYSIOL-LONDON, V584, P735, DOI 10.1113/jphysiol.2007.140160
  18. Gagnon JF, 2006, SLEEP, V29, P1321, DOI 10.1093/sleep/29.10.1321
  19. Garcia-Alloza M, 2004, NEUROPSYCHOPHARMACOL, V29, P410, DOI 10.1038/sj.npp.1300330
  20. Gaugler JE, 2000, J GERONTOL B-PSYCHOL, V55, pP247, DOI 10.1093/geronb/55.4.P247
  21. Grinberg LT, 2009, NEUROPATH APPL NEURO, V35, P406, DOI [10.1111/j.1365-2990.2008.00997.x, 10.1111/j.1365-2990.2009.00997.x]
  22. Grinberg Lea Tenenholz, 2007, Cell and Tissue Banking, V8, P151, DOI 10.1007/s10561-006-9022-z
  23. Grinberg LT, 2010, J NEUROL SCI, V289, P81, DOI 10.1016/j.jns.2009.08.021
  24. Hauw JJ, 2011, J NEUROPATH EXP NEUR, V70, P243, DOI 10.1097/NEN.0b013e318211488e
  25. Heneka MT, 2010, P NATL ACAD SCI USA, V107, P6058, DOI 10.1073/pnas.0909586107
  26. HOBSON JA, 1975, SCIENCE, V189, P55, DOI 10.1126/science.1094539
  27. Hobson JA, 1980, RETICULAR FORMATION
  28. Holth Jerrah, 2017, Neurobiol Sleep Circadian Rhythms, V2, P4, DOI 10.1016/j.nbscr.2016.08.002
  29. Hope T, 1998, INT J GERIATR PSYCH, V13, P682, DOI 10.1002/(SICI)1099-1166(1998100)13:10<682::AID-GPS847>3.0.CO;2-Y
  30. Houlden H, 2001, NEUROLOGY, V56, P1702, DOI 10.1212/WNL.56.12.1702
  31. Hyman BT, 2012, ALZHEIMERS DEMENT, V8, P1, DOI 10.1016/j.jalz.2011.10.007
  32. ISHINO H, 1975, Folia Psychiatrica et Neurologica Japonica, V29, P179
  33. Rodriguez JJ, 2012, PROG NEUROBIOL, V99, P15, DOI 10.1016/j.pneurobio.2012.06.010
  34. Kasashima S, 2003, ACTA NEUROPATHOL, V105, P117, DOI 10.1007/s00401-002-0621-x
  35. Kroeger D, 2017, J NEUROSCI, V37, P1352, DOI 10.1523/JNEUROSCI.1405-16.2016
  36. Lim MM, 2014, NEURODEGENER DIS MAN, V4, P351, DOI [10.2217/NMT.14.33, 10.2217/nmt.14.33]
  37. Litvan I, 1997, BRAIN, V120, P65, DOI 10.1093/brain/120.1.65
  38. Lyness SA, 2003, NEUROBIOL AGING, V24, P1, DOI 10.1016/S0197-4580(02)00057-X
  39. Mackenzie IRA, 2010, ACTA NEUROPATHOL, V119, P1, DOI 10.1007/s00401-009-0612-2
  40. Martinez-Gonzalez C, 2011, FRONT NEUROANAT, V5, DOI 10.3389/fnana.2011.00022
  41. McCurry SM, 1999, J GERIATR PSYCH NEUR, V12, P53, DOI 10.1177/089198879901200203
  42. McKeith IG, 2005, NEUROLOGY, V65, P1863, DOI 10.1212/01.wnl.0000187889.17253.b1
  43. Mena-Segovia J, 2017, NEURON, V94, P7, DOI 10.1016/j.neuron.2017.02.027
  44. Mena-Segovia J, 2011, PROG BRAIN RES, V193, P85, DOI 10.1016/B978-0-444-53839-0.00006-5
  45. Mileykovskiy BY, 2000, J NEUROSCI, V20, P8551
  46. Montine TJ, 2012, ACTA NEUROPATHOL, V123, P1, DOI 10.1007/s00401-011-0910-3
  47. MORRIS JC, 1993, NEUROLOGY, V43, P2412, DOI 10.1212/WNL.43.11.2412-a
  48. Morris M, 2015, NAT NEUROSCI, V18, P1183, DOI 10.1038/nn.4067
  49. MORUZZI G, 1949, ELECTROEN CLIN NEURO, V1, P455, DOI 10.1016/0013-4694(49)90066-8
  50. Nieuwenhuys R., 2008, HUMAN CENTRAL NERVOU
  51. Olszewski J, 1982, CYTOARCHITECTURE HUM
  52. Paxinos G., 2004, HUMAN NERVOUS SYSTEM
  53. Pollak C P, 1990, J Community Health, V15, P123, DOI 10.1007/BF01321316
  54. Pollak C P, 1991, J Geriatr Psychiatry Neurol, V4, P204, DOI 10.1177/089198879100400405
  55. RAMONMOL.E, 1966, J COMP NEUROL, V126, P311, DOI 10.1002/cne.901260301
  56. Rongve A, 2010, J AM GERIATR SOC, V58, P480, DOI 10.1111/j.1532-5415.2010.02733.x
  57. Rub U, 2016, CURR ALZHEIMER RES, V13, P1178, DOI 10.2174/1567205013666160606100509
  58. SAPER CB, 1982, BRAIN RES, V252, P367, DOI 10.1016/0006-8993(82)90404-8
  59. Saper CB, 2017, CURR OPIN NEUROBIOL, V44, P186, DOI 10.1016/j.conb.2017.03.021
  60. Saxena S, 2011, NEURON, V71, P35, DOI 10.1016/j.neuron.2011.06.031
  61. Schlesinger D, 2013, MOL PSYCHIATR, V18, P79, DOI 10.1038/mp.2011.136
  62. Schwartz MD, 2015, PSYCHIAT CLIN N AM, V38, P615, DOI 10.1016/j.psc.2015.07.002
  63. STARZL TE, 1951, J NEUROPHYSIOL, V14, P479
  64. Stern AL, 2015, SPRINGERPLUS, V4, DOI 10.1186/s40064-014-0777-6
  65. Stratmann K, 2016, BRAIN PATHOL, V26, P371, DOI 10.1111/bpa.12289
  66. Suemoto CK, 2017, PLOS MED, V14, DOI 10.1371/journal.pmed.1002267
  67. Theofilas P, 2016, GENOMICS, CIRCUITS, AND PATHWAYS IN CLINICAL NEUROPSYCHIATRY, P317, DOI 10.1016/B978-0-12-800105-9.00020-2
  68. Theofilas P, 2018, NEUROBIOL AGING, V61, P1, DOI 10.1016/j.neurobiolaging.2017.09.007
  69. Theofilas P, 2017, ALZHEIMERS DEMENT, V13, P236, DOI 10.1016/j.jalz.2016.06.2362
  70. Theofilas P, 2015, J ALZHEIMERS DIS, V46, P17, DOI 10.3233/JAD-142682
  71. Tredici KD, 2013, IDIOPATHIC PARKINSON
  72. VERTES RP, 1979, J NEUROPHYSIOL, V42, P214
  73. Vogt O, 1922, ERKRANKUNGEN GROSSHI
  74. Volicer L, 2001, AM J PSYCHIAT, V158, P704, DOI 10.1176/appi.ajp.158.5.704
  75. Walsh CM, 2017, SLEEP, V40, DOI 10.1093/sleep/zsx154
  76. Wang P, 2016, AGING CLIN EXP RES, V28, P951, DOI 10.1007/s40520-015-0382-8
  77. [Anonymous], 2008, R LANG ENV STAT COMP
  78. [Anonymous], 2009, GGPLOT2 ELEGANT GRAP