Subcortical neurodegeneration in chorea: Similarities and differences between chorea-acanthocytosis and Huntington's disease

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Autores
LIU, Jia
GRINBERG, Lea T.
ALHO, Eduardo
RUEB, Udo
DUNNEN, Wilfred den
ARZBERGER, Thomas
SCHMITZ, Christoph
Citação
PARKINSONISM & RELATED DISORDERS, v.49, p.54-59, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction: Chorea-acanthocytosis (ChAc) and Huntington's disease (HD) are neurodegenerative conditions that share clinical and neuropathological features, despite their distinct genetic etiologies. Methods: In order to compare these neuropathologies, serial gallocyanin-stained brain sections from three subjects with ChAc were analyzed and compared with our previous studies of eight HD cases, in addition to three hemispheres from two male controls. Results: Astrogliosis was much greater in the ChAc striatum, as compared to that found in HD, with dramatic increase in total striatal glia numbers and the number of glia per striatal neuron. Striatal astrocytes are most likely derived from the striatal subependymal layer in ChAc, which showed massive proliferation. The thalamic centromedian-parafascicular complex is reciprocally connected to the striatum and is more heavily affected in HD than in ChAc. Conclusion: The distinct patterns of selective vulnerability and gliosis observed in HD and ChAc challenge simplistic views on the pathogenesis of these two diseases with rather similar clinical signs. The particular roles played by astroglia in ChAc and in HD clearly need to be elucidated in more detail.
Palavras-chave
Subcortical neurodegenerationin, Chorea-acanthocytosis, Huntington's disease, Stereology
Referências
  1. Bader B., 2011, DIFFERENTIAL DIAGNOS, P122
  2. Cicchetti F, 2000, BRAIN RES REV, V34, P80, DOI 10.1016/S0165-0173(00)00039-4
  3. Curtis MA, 2005, J CHEM NEUROANAT, V30, P55, DOI 10.1016/j.jchemneu.2005.05.001
  4. Danek A, 2005, J NEUROL SCI, V229, P171, DOI 10.1016/j.jns.2004.11.024
  5. Dobson-Stone C, 2002, EUR J HUM GENET, V10, P773, DOI 10.1038/sj/ejhg.5200866
  6. HEDREEN JC, 1995, J NEUROPATH EXP NEUR, V54, P105, DOI 10.1097/00005072-199501000-00013
  7. Heinsen H, 2000, J CHEM NEUROANAT, V20, P49, DOI 10.1016/S0891-0618(00)00067-3
  8. Heinsen H, 1999, ACTA NEUROPATHOL, V97, P613, DOI 10.1007/s004010051037
  9. Heinsen H, 1996, ACTA NEUROPATHOL, V91, P161, DOI 10.1007/s004010050408
  10. HEINSEN H, 1994, ACTA NEUROPATHOL, V88, P320, DOI 10.1007/BF00310376
  11. HEINSEN H, 1991, J HISTOTECHNOL, V14, P167
  12. Henkel K, 2006, MOVEMENT DISORD, V21, P1728, DOI 10.1002/mds.21046
  13. Holt DJ, 1999, NEUROSCIENCE, V94, P21, DOI 10.1016/S0306-4522(99)00279-1
  14. Inta D, 2015, TRENDS NEUROSCI, V38, P517, DOI 10.1016/j.tins.2015.07.005
  15. IWATA M, 1984, JPN J MED, V23, P118
  16. Kreczmanski P, 2007, BRAIN, V130, P678, DOI 10.1093/brain/awl386
  17. Lauer M, 1996, J BRAIN RES, V37, P243
  18. Liu J., 2012, TREMOR OTHER HYPERKI, V4, P248
  19. Liu J, 2017, CNS SPECTRUMS, V22, P251, DOI 10.1017/S1092852916000560
  20. Lobsiger CS, 2007, NAT NEUROSCI, V10, P1355, DOI 10.1038/nn1988
  21. Looi JCL, 2013, MOL PSYCHIATR, V18, P417, DOI 10.1038/mp.2012.54
  22. Rampoldi L, 2001, NAT GENET, V28, P119, DOI 10.1038/88821
  23. Schneider SA, 2010, MOVEMENT DISORD, V25, P1487, DOI 10.1002/mds.23052
  24. Spampinato U, 2013, PARKINSONISM RELAT D, V19, P569, DOI 10.1016/j.parkreldis.2013.01.012
  25. TELENIUS H, 1994, NAT GENET, V6, P409, DOI 10.1038/ng0494-409
  26. Ueno S, 2001, NAT GENET, V28, P121, DOI 10.1038/88825
  27. Vital A, 2002, CLIN NEUROPATHOL, V21, P77
  28. Walker R. H., TREMOR OTHER HYPERKI, V2
  29. WEST MJ, 1991, ANAT RECORD, V231, P482, DOI 10.1002/ar.1092310411
  30. Zoghbi HY, 2000, ANNU REV NEUROSCI, V23, P217, DOI 10.1146/annurev.neuro.23.1.217