Development and Initial Validation of the Macrophage Activation Syndrome/Primary Hemophagocytic Lymphohistiocytosis Score, a Diagnostic Tool that Differentiates Primary Hemophagocytic Lymphohistiocytosis from Macrophage Activation Syndrome

Carregando...
Imagem de Miniatura
Citações na Scopus
43
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
MOSBY-ELSEVIER
Autores
MINOIA, Francesca
BOVIS, Francesca
DAVI, Sergio
INSALACO, Antonella
LEHMBERG, Kai
SHENOI, Susan
WEITZMAN, Sheila
ESPADA, Graciela
GAO, Yi-Jin
ANTON, Jordi
Citação
JOURNAL OF PEDIATRICS, v.189, p.72-78.e3, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective To develop and validate a diagnostic score that assists in discriminating primary hemophagocytic lymphohistiocytosis (pHLH) from macrophage activation syndrome (MAS) related to systemic juvenile idiopathic arthritis. Study design The clinical, laboratory, and histopathologic features of 362 patients with MAS and 258 patients with pHLH were collected in a multinational collaborative study. Eighty percent of the population was assessed to develop the score and the remaining 20% constituted the validation sample. Variables that entered the best fitted model of logistic regression were assigned a score, based on their statistical weight. The MAS/HLH (MH) score was made up with the individual scores of selected variables. The cutoff in the MH score that discriminated pHLH from MAS best was calculated by means of receiver operating characteristic curve analysis. Score performance was examined in both developmental and validation samples. Results Six variables composed the MH score: age at onset, neutrophil count, fibrinogen, splenomegaly, platelet count, and hemoglobin. The MH score ranged from 0 to 123, and its median value was 97 (1st-3rd quartile 75123) and 12 (1st-3rd quartile 11-34) in pHLH and MAS, respectively. The probability of a diagnosis of pHLH ranged from < 1% for a score of < 11 to >99% for a score of >= 123. A cutoff value of >= 60 revealed the best performance in discriminating pHLH from MAS. Conclusion The MH score is a powerful tool that may aid practitioners to identify patients who are more likely to have pHLH and, thus, could be prioritized for functional and genetic testing.
Palavras-chave
Referências
  1. Arico M, 1996, LEUKEMIA, V10, P197
  2. Behrens EM, 2008, J RHEUMATOL, V35, P343
  3. Behrens EM, 2011, J CLIN INVEST, V121, P2264, DOI [10.1172/JC143157, 10.1172/JCI43157]
  4. Bode SFN, 2012, ARTHRITIS RES THER, V14, DOI 10.1186/ar3843
  5. Canna SW, 2014, ARTHRITIS RHEUMATOL, V66, P1666, DOI 10.1002/art.38379
  6. Cetica V, 2016, J ALLERGY CLIN IMMUN, V137, P188, DOI 10.1016/j.jaci.2015.06.048
  7. Chandrakasan S, 2013, J PEDIATR-US, V163, P1253, DOI 10.1016/j.jpeds.2013.06.053
  8. Cron RQ, 2015, EXPERT REV CLIN IMMU, V11, P1043, DOI 10.1586/1744666X.2015.1058159
  9. Davi S, 2014, ARTHRITIS RHEUMATOL, V66, P2871, DOI 10.1002/art.38769
  10. De Benedetti F, 2016, TXB PEDIAT RHEUMATOL, P205
  11. Degar B, 2015, HEMATOL ONCOL CLIN N, V29, P903, DOI 10.1016/j.hoc.2015.06.008
  12. Efthimiou P, 2014, CLIN RHEUMATOL, V33, P305, DOI 10.1007/s10067-014-2487-4
  13. Emile JF, 2016, BLOOD, V127, P2672, DOI [10.1182/blood-2016-01690636, 10.1182/blood-2016-01-690636]
  14. Fardet L, 2014, ARTHRITIS RHEUMATOL, V66, P2613, DOI 10.1002/art.38690
  15. Favara BE, 1997, MED PEDIATR ONCOL, V29, P157, DOI 10.1002/(SICI)1096-911X(199709)29:3<157::AID-MPO1>3.0.CO;2-C
  16. Harrell F. E., 2001, REGRESSION MODELING
  17. Hayden A, 2016, BLOOD REV, V30, P411, DOI 10.1016/j.blre.2016.05.001
  18. Henter JI, 2007, PEDIATR BLOOD CANCER, V48, P124, DOI 10.1002/pbc.21039
  19. HENTER JI, 1991, BLOOD, V78, P2918
  20. Henter JI, 1997, MED PEDIATR ONCOL, V28, P342, DOI 10.1002/(SICI)1096-911X(199705)28:5<342::AID-MPO3>3.3.CO;2-Y
  21. Janka GE, 2012, ANNU REV MED, V63, P233, DOI 10.1146/annurev-med-041610-134208
  22. Janka GE, 2014, BLOOD REV, V28, P135, DOI 10.1016/j.blre.2014.03.002
  23. Jordan MB, 2011, BLOOD, V118, P4041, DOI 10.1182/blood-2011-03-278127
  24. Kaufman KM, 2014, ARTHRITIS RHEUMATOL, V66, P3486, DOI 10.1002/art.38793
  25. Kelly A, 2007, CURR OPIN RHEUMATOL, V19, P477, DOI 10.1097/BOR.0b013e32825a6a79
  26. Lehmberg K, 2013, J PEDIATR-US, V162, P1245, DOI 10.1016/j.jpeds.2012.11.081
  27. Lehmberg K, 2013, BRIT J HAEMATOL, V160, P275, DOI 10.1111/bjh.12138
  28. Minoia F, 2015, J RHEUMATOL, V42, P994, DOI 10.3899/jrheum.141261
  29. Minoia F, 2014, ARTHRITIS RHEUMATOL, V66, P3160, DOI 10.1002/art.38802
  30. Osugi Y, 1997, BLOOD, V89, P4100
  31. Petty RE, 2004, J RHEUMATOL, V31, P390
  32. Ravelli A, 2005, J PEDIATR-US, V146, P598, DOI 10.1016/j.jpeds.2004.12.016
  33. Ravelli A, 2012, GENES IMMUN, V13, P289, DOI 10.1038/gene.2012.3
  34. Ravelli A, 2016, RMD OPEN, V2, DOI 10.1136/RMDOPEN-2015-000161
  35. Ravelli A, 2016, ANN RHEUM DIS, V75, P481, DOI 10.1136/annrheumdis-2015-208982
  36. Ravelli A, 2016, ARTHRITIS RHEUMATOL, V68, P566, DOI 10.1002/art.39332
  37. Sawhney S, 2001, ARCH DIS CHILD, V85, P421, DOI 10.1136/adc.85.5.421
  38. Schulert GS, 2016, J INFECT DIS, V213, P1180, DOI 10.1093/infdis/jiv550
  39. Spessott WA, 2015, BLOOD, V125, P1566, DOI 10.1182/blood-2014-11-610816
  40. Stephan JL, 2001, RHEUMATOLOGY, V40, P1285, DOI 10.1093/rheumatology/40.11.1285
  41. STEPHAN JL, 1993, CLIN EXP RHEUMATOL, V11, P451
  42. Vastert SJ, 2010, RHEUMATOLOGY, V49, P441, DOI 10.1093/rheumatology/kep418
  43. Wang YF, 2014, LECT NOTES COMPUT SC, V8544, P1
  44. Weaver LK, 2014, CURR OPIN RHEUMATOL, V26, P562, DOI 10.1097/BOR.0000000000000093
  45. Zhang KJ, 2011, BLOOD, V118, P5794, DOI 10.1182/blood-2011-07-370148
  46. Zhang MC, 2016, J IMMUNOL, V196, P2492, DOI 10.4049/jimmunol.1501284
  47. Zhang MC, 2014, CURR RHEUMATOL REP, V16, DOI 10.1007/s11926-014-0439-2