Assessment and comparison of bacterial load levels determined by quantitative amplifications in blood culture-positive and negative neonatal sepsis

Carregando...
Imagem de Miniatura
Citações na Scopus
21
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
INST MEDICINA TROPICAL SAO PAULO
Autores
STRANIERI, Ines
RODRIGUES, Jonatas Cristian
NADAF, Maria Isabel Valdomir
Citação
REVISTA DO INSTITUTO DE MEDICINA TROPICAL DE SAO PAULO, v.60, article ID UNSP e61, 10p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Bacterial sepsis remains a major cause of mortality and blood cultures are the gold standard of laboratory diagnosis even though they lack sensitivity in neonates. Culture-negative sepsis, also known as clinical sepsis, has long been considered a diagnosis in neonatal intensive care units because, as well as culture-positive infants, culture-negative neonates have worse prognosis in comparison with non-infected ones. Quantitative amplifications are used to detect bacterial infections in neonates but results are considered only in a qualitative way (positive or negative). The aim of the present study was to determine and compare bacterial load levels in blood culture-positive and culture-negative neonatal sepsis. Seventy neonates with clinical and laboratory evidence of infection admitted at three neonatal intensive care units were classified as blood culture-positive or culture-negative. Blood samples obtained at the same time of blood cultures had bacterial load levels assessed through a 16S rDNA qPCR. Blood cultures were positive in 29 cases (41.4%) and qPCR in 64 (91.4%). In the 29 culture-positive cases, 100% were also positive by qPCR, while in the 41 culture-negative cases, 35 (85.4%) were positive by qPCR. Bacterial load levels were in general < 50 CFU/mL, but were significantly higher in culture-positive cases (Mann-Whitney, p = 0.013). although clinical and laboratory findings were similar, excepting for deaths. In conclusion, the present study has shown that blood culture-negative neonates have lower bacteria load levels in their bloodstream when compared to blood culture-positive infants.
Palavras-chave
Blood culture, Culture-negative neonatal sepsis, Neonatal blood stream infection, Real Time PCR, 16S rDNA
Referências
  1. Bard JD, 2016, J CLIN MICROBIOL, V54, P1418, DOI 10.1128/JCM.02919-15
  2. Burd EM, 2010, CLIN MICROBIOL REV, V23, P550, DOI 10.1128/CMR.00074-09
  3. Buttery JP, 2002, ARCH DIS CHILD, V87, pF25, DOI 10.1136/fn.87.1.F25
  4. Cantey JB, 2017, PEDIATRICS, V140, DOI 10.1542/peds.2017-0044
  5. Carey AJ, 2008, CLIN PERINATOL, V35, P223, DOI 10.1016/j.clp.2007.11.014
  6. Chan KYY, 2009, CRIT CARE MED, V37, P2441, DOI 10.1097/CCM.0b013e3181a554de
  7. Chen LH, 2009, CLIN PEDIATR, V48, P641, DOI 10.1177/0009922809333972
  8. Connell TG, 2007, PEDIATRICS, V119, P891, DOI 10.1542/peds.2006-0440
  9. Couto RC, 2007, AM J INFECT CONTROL, V35, P183, DOI 10.1016/j.ajic.2006.06.013
  10. Gerdes JS, 2004, PEDIATR CLIN N AM, V51, P939, DOI 10.1016/j.pcl.2004.03.009
  11. GERDES JS, 1991, CLIN PERINATOL, V18, P361
  12. Goldstein B, 2006, PEDIATR CRIT CARE ME, V7, P200, DOI 10.1097/01.PCC.0000217470.68764.36
  13. Han YW, 2009, J CLIN MICROBIOL, V47, P38, DOI 10.1128/JCM.01206-08
  14. Hofer N, 2012, NEONATOLOGY, V102, P25, DOI 10.1159/000336629
  15. Jardine LA, 2009, J PAEDIATR CHILD H, V45, P210, DOI 10.1111/j.1440-1754.2008.01455.x
  16. Jordan JA, 2005, J MOL DIAGN, V7, P575, DOI 10.1016/S1525-1578(10)60590-9
  17. Kasper DC, 2013, NEONATOLOGY, V103, P268, DOI 10.1159/000346365
  18. Kellogg JA, 1997, PEDIATR INFECT DIS J, V16, P381, DOI 10.1097/00006454-199704000-00009
  19. Leuthner SR, 2004, PEDIATR CLIN N AM, V51, P737, DOI 10.1016/j.pcl.2004.01.016
  20. Liu CL, 2014, ARCH PEDIATRIE, V21, P162, DOI 10.1016/j.arcped.2013.11.015
  21. Liu L, 2012, LANCET, V379, P2151, DOI 10.1016/S0140-6736(12)60560-1
  22. MANROE BL, 1979, J PEDIATR-US, V95, P89, DOI 10.1016/S0022-3476(79)80096-7
  23. Mularoni A, 2014, PEDIATR INFECT DIS J, V33, pE121, DOI 10.1097/INF.0000000000000175
  24. Murray P, 1999, MANUAL CLIN MICROBIO
  25. Nogueira CAM, 2004, REV PANAM INFECTOL, V6, P35
  26. Ohlin A, 2008, ACTA PAEDIATR, V97, P1376, DOI 10.1111/j.1651-2227.2008.00924.x
  27. Ohlin A, 2012, NEONATOLOGY, V101, P241, DOI 10.1159/000334655
  28. Ozkan H, 2014, PEDIATR INT, V56, P60, DOI 10.1111/ped.12218
  29. Pammi M, 2011, PEDIATRICS, V128, pE973, DOI 10.1542/peds.2011-1208
  30. Piantino JH, 2013, NEOREVIEWS, V14, pe294, DOI 10.1542/NE0.14-6-E294
  31. Schelonka RL, 1996, J PEDIATR-US, V129, P275, DOI 10.1016/S0022-3476(96)70254-8
  32. Stranieri I, 2016, J MATERN-FETAL NEO M, V29, P2141, DOI 10.3109/14767058.2015.1077223
  33. Tam PYI, 2017, PEDIATR RES, V82, P574, DOI 10.1038/pr.2017.134
  34. United Nations Children's Fund, 2008, STAT WORLDS CHILDR 2
  35. World Health Organization, 2010, WORLD HLTH STAT 2010
  36. Wu YD, 2008, J CLIN MICROBIOL, V46, P2613, DOI 10.1128/JCM.02237-07
  37. Zucol F, 2006, J CLIN MICROBIOL, V44, P2750, DOI 10.1128/JCM.00112-06