Pathogenic Germline Variants in 10,389 Adult Cancers

Carregando...
Imagem de Miniatura
Citações na Scopus
500
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
CELL PRESS
Autores
HUANG, Kuan-lin
MASHL, R. Jay
WU, Yige
RITTER, Deborah I.
WANG, Jiayin
OH, Clara
PACZKOWSKA, Marta
REYNOLDS, Sheila
WYCZALKOWSKI, Matthew A.
OAK, Ninad
Citação
CELL, v.173, n.2, p.355-370.e14, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
We conducted the largest investigation of predisposition variants in cancer to date, discovering 853 pathogenic or likely pathogenic variants in 8% of 10,389 cases from 33 cancer types. Twenty-one genes showed single or cross-cancer associations, including novel associations of SDHA in melanoma and PALB2 in stomach adenocarcinoma. The 659 predisposition variants and 18 additional large deletions in tumor suppressors, including ATM, BRCA1, and NF1, showed low gene expression and frequent (43%) loss of heterozygosity or biallelic two-hit events. We also discovered 33 such variants in oncogenes, including missenses in MET, RET, and PTPN11 associated with high gene expression. We nominated 47 additional predisposition variants from prioritized VUSs supported by multiple evidences involving case-control frequency, loss of heterozygosity, expression effect, and co-localization with mutations and modified residues. Our integrative approach links rare predisposition variants to functional consequences, informing future guidelines of variant classification and germline genetic testing in cancer.
Palavras-chave
Referências
  1. Adzhubei I, 2013, CURR PROTOC HUM GENE, DOI [10.1002/0471142905.hg0720s76, 10. 1002/0471142905. hg0720s76, DOI 10.1002/0471142905.HG0720S76]
  2. Adzhubei IA, 2010, NAT METHODS, V7, P248, DOI 10.1038/nmeth0410-248
  3. Amendola LM, 2016, AM J HUM GENET, V98, P1067, DOI 10.1016/j.ajhg.2016.03.024
  4. Ballinger ML, 2016, LANCET ONCOL, V17, P1261, DOI 10.1016/S1470-2045(16)30147-4
  5. Bodmer W, 2010, CURR OPIN GENET DEV, V20, P262, DOI 10.1016/j.gde.2010.04.016
  6. Bose R, 2013, CANCER DISCOV, V3, P224, DOI 10.1158/2159-8290.CD-12-0349
  7. Chatterjee R, 2012, HUM GENET, V131, P1725, DOI 10.1007/s00439-012-1181-3
  8. Chen K, 2015, CLIN CHEM, V61, P544, DOI 10.1373/clinchem.2014.231100
  9. Cheng DT, 2017, BMC MED GENOMICS, V10, DOI 10.1186/s12920-017-0271-4
  10. Dai W, 2004, CANCER RES, V64, P440, DOI 10.1158/0008-5472.CAN-03-3119
  11. Ding JR, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9554
  12. Fishbein L, 2012, CANCER GENET-NY, V205, P1, DOI 10.1016/j.cancergen.2012.01.009
  13. Fromer Menachem, 2014, Curr Protoc Hum Genet, V81, DOI 10.1002/0471142905.hg0723s81
  14. Gabant G, 2008, J MOL BIOL, V380, P489, DOI 10.1016/j.jmb.2008.04.053
  15. Hornbeck PV, 2015, NUCLEIC ACIDS RES, V43, pD512, DOI 10.1093/nar/gku1267
  16. Jansson M, 2008, NAT CELL BIOL, V10, P1431, DOI 10.1038/ncb1802
  17. Jimenez C, 2004, J CLIN ENDOCR METAB, V89, P3521, DOI 10.1210/jc.2004-0073
  18. Kawamoto Y, 2004, J BIOL CHEM, V279, P14213, DOI 10.1074/jbc.M312600200
  19. Knudson AG, 2001, NAT REV CANCER, V1, P157, DOI 10.1038/35101031
  20. KNUDSON AG, 1971, P NATL ACAD SCI USA, V68, P820, DOI 10.1073/pnas.68.4.820
  21. Koboldt DC, 2012, GENOME RES, V22, P568, DOI 10.1101/gr.129684.111
  22. Koire A, 2016, BIOCOMPUT-PAC SYM, P207
  23. Krassowski M, 2018, NUCLEIC ACIDS RES, V46, pD901, DOI 10.1093/nar/gkx973
  24. Landrum MJ, 2016, NUCLEIC ACIDS RES, V44, pD862, DOI 10.1093/nar/gkv1222
  25. Lek M, 2016, NATURE, V536, P285, DOI 10.1038/nature19057
  26. Li Shuangwei, 2012, Front Med, V6, P275, DOI 10.1007/s11684-012-0216-4
  27. Lichtenstein P, 2000, NEW ENGL J MED, V343, P78, DOI 10.1056/NEJM200007133430201
  28. Lu C, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms10086
  29. Mashl RJ, 2017, GENOME RES, V27, P1450, DOI 10.1101/gr.211656.116
  30. McKenna A, 2010, GENOME RES, V20, P1297, DOI 10.1101/gr.107524.110
  31. McLaren W, 2016, GENOME BIOL, V17, DOI 10.1186/s13059-016-0974-4
  32. Morak M., 2017, FAM CANC
  33. Niu BF, 2016, NAT GENET, V48, P827, DOI 10.1038/ng.3586
  34. Parsons D.W., 2016, JAMA ONCOL
  35. Patil M, 2013, CELL CYCLE, V12, P166, DOI 10.4161/cc.23053
  36. Pedersen BS, 2016, GENOME BIOL, V17, DOI 10.1186/s13059-016-0973-5
  37. Plaza-Menacho I, 2016, CELL REP, V17, P3319, DOI 10.1016/j.celrep.2016.11.061
  38. Rahman N, 2014, NATURE, V505, P302, DOI 10.1038/nature12981
  39. Reimand J, 2015, PLOS GENET, V11, DOI 10.1371/journal.pgen.1004919
  40. Reimand J, 2013, SCI REP-UK, V3, DOI 10.1038/srep02651
  41. Richards S, 2015, GENET MED, V17, P405, DOI 10.1038/gim.2015.30
  42. Robinson JT, 2011, NAT BIOTECHNOL, V29, P24, DOI 10.1038/nbt.1754
  43. Ruderfer DM, 2016, NAT GENET, V48, P1107, DOI 10.1038/ng.3638
  44. Sahasrabudhe R, 2017, GASTROENTEROLOGY, V152, P983, DOI 10.1053/j.gastro.2016.12.010
  45. Schmidt L, 1998, CANCER RES, V58, P1719
  46. Shiozaki EN, 2004, MOL CELL, V14, P405, DOI 10.1016/S1097-2765(04)00238-2
  47. Solomon S, 2012, CANCER J, V18, P485, DOI 10.1097/PPO.0b013e318278c4a6
  48. Southey MC, 2016, J MED GENET, V53, P800, DOI 10.1136/jmedgenet-2016-103839
  49. Tibbetts RS, 2000, GENE DEV, V14, P2989, DOI 10.1101/gad.851000
  50. Vogelstein B, 2013, SCIENCE, V339, P1546, DOI 10.1126/science.1235122
  51. Wagih O, 2015, NAT METHODS, V12, P531, DOI 10.1038/nmeth.3396
  52. Zhang JH, 2015, NEW ENGL J MED, V373, P2336, DOI 10.1056/NEJMoa1508054