Assessment of complementarity of WGCNA and NERI results for identification of modules associated to schizophrenia spectrum disorders

Carregando...
Imagem de Miniatura
Citações na Scopus
20
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
FELTRIN, Arthur Sant'Anna
SIMOES, Sergio Nery
MARTINS JR., David Correa
Citação
PLOS ONE, v.14, n.1, article ID e0210431, 22p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Psychiatric disorders involve both changes in multiple genes as well different types of variations. As such, gene co-expression networks allowed the comparison of different stages and parts of the brain contributing to an integrated view of genetic variation. Two methods based on co-expression networks presents appealing results: Weighted Gene Correlation Network Analysis (WGCNA) and Network-Medicine Relative Importance (NERI). By selecting two different gene expression databases related to schizophrenia, we evaluated the biological modules selected by both WGCNA and NERI along these databases as well combining both WGCNA and NERI results (WGCNA-NERI). Also we conducted a enrichment analysis for the identification of partial biological function of each result (as well a replication analysis). To appraise the accuracy of whether both algorithms (as well our approach, WGCNA-NERI) were pointing to genes related to schizophrenia and its complex genetic architecture we conducted the MSET analysis, based on a reference gene list of schizophrenia database (SZDB) related to DNA Methylation, Exome, GWAS as well as copy number variation mutation studies. The WGCNA results were more associated with inflammatory pathways and immune system response; NERI obtained genes related with cellular regulation, embryological pathways e cellular growth factors. Only NERI were able to provide a statistical meaningful results to the MSET analysis (for Methylation and de novo mutations data). However, combining WGCNA and NERI provided a much more larger overlap in these two categories and additionally on Transcriptome database. Our study suggests that using both methods in combination is better for establishing a group of modules and pathways related to a complex disease than using each method individually. NERI is available at: https://bitbucket.org/sergionery/neri.
Palavras-chave
Referências
  1. Alamowitch S, 2009, NEUROLOGY, V73, P1873, DOI 10.1212/WNL.0b013e3181c3fd12
  2. Allen NC, 2008, NAT GENET, V40, P827, DOI 10.1038/ng.171
  3. Arpon A, 2018, EPIGENOMICS-UK, V10, P91, DOI 10.2217/epi-2017-0082
  4. Barabasi AL, 2004, NAT REV GENET, V5, P101, DOI 10.1038/nrg1272
  5. Barabasi AL, 2011, NAT REV GENET, V12, P56, DOI 10.1038/nrg2918
  6. Bastian M, 2009, P 3 INT ICWSM C
  7. Bose Jens, 2004, J Biol, V3, P15, DOI 10.1186/jbiol10
  8. Carroll LS, 2010, MOL PSYCHIATR, V15, P1101, DOI 10.1038/mp.2009.96
  9. Chaste P, 2015, BIOL PSYCHIAT, V77, P775, DOI 10.1016/j.biopsych.2014.09.017
  10. Damiani D, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms13509
  11. Dresler T, 2010, NEUROPSYCHOPHARMACOL, V35, P2193, DOI 10.1038/npp.2010.91
  12. Eisinger BE, 2013, BMC NEUROSCI, V14, DOI 10.1186/1471-2202-14-147
  13. Fillman SG, 2014, TRANSL PSYCHIAT, V4, DOI 10.1038/tp.2014.8
  14. Flint J, 2014, NATURE, V511, P412, DOI 10.1038/nature13645
  15. Gaiteri C, 2014, GENES BRAIN BEHAV, V13, P13, DOI 10.1111/gbb.12106
  16. Gautier L, 2004, BIOINFORMATICS, V20, P307, DOI 10.1093/bioinformatics/btg405
  17. Hirt L, 2018, CLIN TRANSLATIONAL N, DOI [10.1177/2514183X17752902, DOI 10.1177/2514183X17752902]
  18. Horvath S, 2011, WEIGHTED NETWORK ANALYSIS: APPLICATIONS IN GENOMICS AND SYSTEMS BIOLOGY, P1, DOI 10.1007/978-1-4419-8819-5
  19. Horvath S, 2014, BIOL PSYCHIAT, V75, P316, DOI 10.1016/j.biopsych.2013.06.010
  20. Hosseinzadeh Z, 2011, CELL PHYSIOL BIOCHEM, V28, P693, DOI 10.1159/000335763
  21. Hu JX, 2016, NAT REV GENET, V17, P615, DOI 10.1038/nrg.2016.87
  22. Huang DW, 2009, NAT PROTOC, V4, P44, DOI 10.1038/nprot.2008.211
  23. Iancu OD, 2015, FRONT GENET, V6, DOI 10.3389/fgene.2015.00174
  24. Jablensky A, 2011, GENES BRAIN BEHAV, V10, P410, DOI 10.1111/j.1601-183X.2011.00679.x
  25. Jia P, 2010, MOL PSYCHIATR, V15, P453, DOI 10.1038/mp.2009.93
  26. Kanehisa M, 2017, NUCLEIC ACIDS RES, V45, pD353, DOI 10.1093/nar/gkw1092
  27. Kelley Rebecca L, 2017, Clin Exp Reprod Med, V44, P119, DOI 10.5653/cerm.2017.44.3.119
  28. Kohler S, 2008, AM J HUM GENET, V82, P949, DOI 10.1016/j.ajhg.2008.02.013
  29. Langfelder P, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-559
  30. Langfelder P, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061505
  31. Malki K, 2013, PHARMACOGENOMICS, V14, P1979, DOI [10.2217/PGS.13.154, 10.2217/pgs.13.154]
  32. Maschietto M, 2015, BMC MED GENOMICS, V8, DOI 10.1186/s12920-015-0098-9
  33. McCamphill PK, 2015, J NEUROSCI, V35, P4403, DOI 10.1523/JNEUROSCI.2376-14.2015
  34. Muller M, 2010, NEUROPATH APPL NEURO, V36, P368, DOI 10.1111/j.1365-2990.2010.01089.x
  35. Mukthavaram R, 2015, J TRANSL MED, V13, DOI 10.1186/s12967-015-0627-5
  36. Obayashi T, 2008, NUCLEIC ACIDS RES, V36, pD77, DOI 10.1093/nar/gkm840
  37. Oldham MC, 2006, P NATL ACAD SCI USA, V103, P17973, DOI 10.1073/pnas.0605938103
  38. Parikshak NN, 2015, NAT REV GENET, V16, P441, DOI 10.1038/nrg3934
  39. Pinheiro J, 2018, NLME LINEAR NONLINEA
  40. Popescu BFG, 2014, ACTA NEUROPATHOLOGIC
  41. Querol-Vilaseca M, 2017, J NEUROINFLAMM, V14, DOI 10.1186/s12974-017-0893-7
  42. Rieckmann A, 2018, P NATL ACAD SCI USA, V115, P10160, DOI 10.1073/pnas.1804641115
  43. Ross CA, 2006, NEURON, V52, P139, DOI 10.1016/j.neuron.2006.09.015
  44. Sanfilippo C, 2017, MOL CELL NEUROSCI, V85, P162, DOI 10.1016/j.mcn.2017.10.001
  45. Saxena Ashwini, 2017, Mol Neuropsychiatry, V3, P108, DOI 10.1159/000480349
  46. Simats A, 2016, BBA-MOL BASIS DIS, V1862, P411, DOI 10.1016/j.bbadis.2015.10.025
  47. Simoes SN, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/1471-2105-16-S19-S9
  48. Simoes SN, 2015, ABORDAGEM INTEGRACAO
  49. Sutton MA, 2007, NEURON, V55, P648, DOI 10.1016/j.neuron.2007.07.030
  50. Tan MC, 2017, FRONT CELL NEUROSCI, V11, DOI 10.3389/fncel.2017.00124
  51. Tiberi L, 2014, CANCER CELL, V26, P797, DOI 10.1016/j.ccell.2014.10.021
  52. Tiberi L, 2012, NAT NEUROSCI, V15, P1627, DOI 10.1038/nn.3264
  53. Vorstman JAS, 2011, MOL PSYCHIATR, V16, P442, DOI 10.1038/mp.2010.26
  54. Wiley CA, 2015, NEUROPATHOLOGY, V35, P95, DOI 10.1111/neup.12158
  55. Wu Y, 2017, SCHIZOPHRENIA BULL, V43, P459, DOI 10.1093/schbul/sbw102
  56. Xu Y, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-05846-4
  57. Yu GC, 2012, OMICS, V16, P284, DOI 10.1089/omi.2011.0118
  58. Zuo LJ, 2016, PSYCHIAT GENET, V26, P109, DOI 10.1097/YPG.0000000000000129