MicroRNAs as Diagnostic and Prognostic Biomarkers in Ischemic Stroke-A Comprehensive Review and Bioinformatic Analysis

Carregando...
Imagem de Miniatura
Citações na Scopus
121
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
EYILETEN, Ceren
ROSA, Salvatore De
MIROWSKA-GUZEL, Dagmara
SOPLINSKA, Aleksandra
INDOLFI, Ciro
JASTRZEBSKA-KURKOWSKA, Iwona
CZLONKOWSKA, Anna
POSTULA, Marek
Citação
CELLS, v.7, n.12, article ID 249, 34p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Stroke is the second-most common cause of death worldwide. The pathophysiology of ischemic stroke (IS) is related to inflammation, atherosclerosis, blood coagulation, and platelet activation. MicroRNAs (miRNAs) play important roles in physiological and pathological processes of neurodegenerative diseases and progression of certain neurological diseases, such as IS. Several different miRNAs, and their target genes, are recognized to be involved in the pathophysiology of IS. The capacity of miRNAs to simultaneously regulate several target genes underlies their unique value as diagnostic and prognostic markers in IS. In this review, we focus on the role of miRNAs as diagnostic and prognostic biomarkers in IS. We discuss the most common and reliable detection methods available and promising tests currently under development. We also present original results from bioinformatic analyses of published results, identifying the ten most significant genes (HMGB1, YWHAZ, PIK3R1, STAT3, MAPK1, CBX5, CAPZB, THBS1, TNFRSF10B, RCOR1) associated with inflammation, blood coagulation, and platelet activation and targeted by miRNAs in IS. Additionally, we created miRNA-gene target interaction networks based on Gene Ontology (GO) information derived from publicly available databases. Among our most interesting findings, miR-19a-3p is the most widely modulated miRNA across all selected ontologies and might be proposed as novel biomarker in IS to be tested in future studies.
Palavras-chave
miRNA, bioinformatic analysis, ischemic stroke, miRNA-gene target interaction, network, biomarker, diagnosis, prognosis
Referências
  1. Agarwal V, 2015, ELIFE, V4, DOI 10.7554/eLife.05005
  2. [Anonymous], 2017, EUROPEAN CARDIOVASCU
  3. Bader Andreas G., 2012, Frontiers in Genetics, V3, P120, DOI 10.3389/fgene.2012.00120
  4. Bam M, 2018, MOL NEUROBIOL, V55, P1419, DOI 10.1007/s12035-016-0347-8
  5. Beal CC, 2010, J NEUROSCI NURS, V42, P80, DOI 10.1097/JNN.0b013e3181ce5c70
  6. Benjamin EJ, 2017, CIRCULATION, V135, pE146, DOI 10.1161/CIR.0000000000000485
  7. Bonauer A, 2009, SCIENCE, V324, P1710, DOI 10.1126/science.1174381
  8. Bushati N, 2008, CURR OPIN NEUROBIOL, V18, P292, DOI 10.1016/j.conb.2008.07.001
  9. Carino A, 2016, BIOMED RES INT, DOI 10.1155/2016/3968206
  10. Cevik O, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0158287
  11. Chang TY, 2014, BMC GENOMICS, V15, DOI 10.1186/1471-2164-15-802
  12. Wang YL, 2006, BMC GENOMICS, V7, DOI 10.1186/1471-2164-7-59
  13. Weber M., 2011, CARDIOL RES PRACT, V2011, DOI 10.4061/2011/532915
  14. Wu CC, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17030305
  15. Wu J, 2017, THROMB HAEMOSTASIS, V117, P992, DOI 10.1160/TH16-08-0606
  16. Wu J, 2015, INT J CLIN EXP MED, V8, P21071
  17. Yang FH, 2012, J MOL CELL CARDIOL, V52, P761, DOI 10.1016/j.yjmcc.2011.11.013
  18. Yang H, 2009, ANGEW CHEM INT EDIT, V48, P8461, DOI 10.1002/anie.200902577
  19. Yin KJ, 2013, BRAIN, V136, P1274, DOI 10.1093/brain/awt002
  20. Zampetaki A, 2010, CIRC RES, V107, P810, DOI 10.1161/CIRCRESAHA.110.226357
  21. Zeng L, 2014, GENE THER, V21, P37, DOI 10.1038/gt.2013.55
  22. Zhang XX, 2011, J BIOL CHEM, V286, P1429, DOI 10.1074/jbc.M110.146530
  23. Zhou JS, 2014, MOL MED REP, V10, P971, DOI 10.3892/mmr.2014.2245
  24. Chen CF, 2005, NUCLEIC ACIDS RES, V33, DOI 10.1093/nar/gni178
  25. Chen YJ, 2017, FRONT NEUROL, V8, DOI 10.3389/fneur.2017.00057
  26. Chen YS, 2015, J STROKE CEREBROVASC, V24, P2313, DOI 10.1016/j.jstrokecerebrovasdis.2015.06.018
  27. Chen ZZ, 2018, CELL PHYSIOL BIOCHEM, V45, P397, DOI 10.1159/000486916
  28. Chevillet JR, 2014, P NATL ACAD SCI USA, V111, P14888, DOI 10.1073/pnas.1408301111
  29. Chou CH, 2018, NUCLEIC ACIDS RES, V46, pD296, DOI 10.1093/nar/gkx1067
  30. Chugh P, 2012, WIRES RNA, V3, P601, DOI 10.1002/wrna.1120
  31. Cirillo P, 2005, CARDIOVASC RES, V68, P47, DOI 10.1016/j.cardiores.2005.05.010
  32. Cirillo P, 2003, THROMB RES, V112, P51, DOI 10.1016/j.thromres.2003.11.011
  33. Corsten MF, 2010, CIRC-CARDIOVASC GENE, V3, P499, DOI 10.1161/CIRCGENETICS.110.957415
  34. De Rosa R, 2017, AM J CARDIOL, V120, P15, DOI 10.1016/j.amjcard.2017.03.264
  35. De Rosa S, 2018, EUR J HEART FAIL, V20, P1000, DOI 10.1002/ejhf.1119
  36. De Rosa S, 2018, ANN INTERN MED, V168, P343, DOI 10.7326/M17-3033
  37. De Rosa S, 2018, FRONT ENDOCRINOL, V9, DOI 10.3389/fendo.2018.00002
  38. De Rosa S, 2015, EXPERIENTIA SUPPL, V106, P139, DOI 10.1007/978-3-0348-0955-9_6
  39. De Rosa S, 2014, CIRC J, V78, P567, DOI 10.1253/circj.CJ-14-0086
  40. De Rosa S, 2011, CIRCULATION, V124, P1936, DOI 10.1161/CIRCULATIONAHA.111.037572
  41. De Rosa S, 2009, J VASC RES, V46, P609, DOI 10.1159/000226229
  42. Dervishi I, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-32902-4
  43. Di Ieva A, 2014, NEUROSURGERY, V75, P181, DOI 10.1227/NEU.0000000000000369
  44. Diamanti D, 2013, J HUNTINGTONS DIS, V2, P185, DOI 10.3233/JHD-120042
  45. Doebele C, 2010, BLOOD, V115, P4944, DOI 10.1182/blood-2010-01-264812
  46. Dong HF, 2012, ANAL CHEM, V84, P8670, DOI 10.1021/ac301860v
  47. Durinck S, 2009, NAT PROTOC, V4, P1184, DOI 10.1038/nprot.2009.97
  48. Eminaga Seda, 2013, Curr Protoc Mol Biol, VChapter 4, DOI 10.1002/0471142727.mb0417s103
  49. Ferraro D, 2016, SCI REP-UK, V6, DOI 10.1038/srep25540
  50. Fichtlscherer S, 2010, CIRC RES, V107, P677, DOI 10.1161/CIRCRESAHA.109.215566
  51. Gan CS, 2012, GENET MOL RES, V11, P147, DOI 10.4238/2012.January.27.1
  52. Gao JB, 2015, CLIN CHIM ACTA, V450, P176, DOI 10.1016/j.cca.2015.08.014
  53. Gareri C, 2016, CIRC RES, V118, P1170, DOI 10.1161/CIRCRESAHA.115.308237
  54. Gong Z, 2016, J NEUROL SCI, V361, P150, DOI 10.1016/j.jns.2015.12.047
  55. He WZ, 2016, J STROKE CEREBROVASC, V25, P1753, DOI 10.1016/j.jstrokecerebrovasdis.2016.03.023
  56. Huang SL, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163951
  57. Jaguszewski M, 2014, EUR HEART J, V35, P999, DOI 10.1093/eurheartj/eht392
  58. Janssen HLA, 2013, NEW ENGL J MED, V368, P1685, DOI 10.1056/NEJMoa1209026
  59. Ji QH, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163645
  60. Jia LH, 2015, CELL BIOCHEM FUNCT, V33, P314, DOI 10.1002/cbf.3116
  61. Jickling GC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0099283
  62. Jin FQ, 2017, NEUROL SCI, V38, P2015, DOI 10.1007/s10072-017-3071-x
  63. Kang K, 2012, J ANIM SCI BIOTECHNO, V3, DOI 10.1186/2049-1891-3-4
  64. Lee HJ, 2013, EXP BIOL MED, V238, P339, DOI 10.1258/ebm.2012.012251
  65. Leung LY, 2014, CLIN CHIM ACTA, V433, P139, DOI 10.1016/j.cca.2014.03.007
  66. Li PF, 2015, CELL MOL NEUROBIOL, V35, P433, DOI 10.1007/s10571-014-0139-5
  67. Li YH, 2016, ANN TRANSL MED, V4, DOI 10.21037/atm.2016.03.12
  68. Liang ZX, 2016, PROG NEUROBIOL, V137, P1, DOI 10.1016/j.pneurobio.2015.11.001
  69. Liu LF, 2012, J GERIATR CARDIOL, V9, P28, DOI 10.3724/SP.J.1263.2012.00028
  70. Liu XS, 2013, J BIOL CHEM, V288, P12478, DOI 10.1074/jbc.M112.449025
  71. Liu YP, 2015, J CLIN NEUROSCI, V22, P291, DOI 10.1016/j.jocn.2014.05.042
  72. Long GW, 2013, BMC NEUROL, V13, DOI 10.1186/1471-2377-13-178
  73. Luengo-Fernandez R, 2013, NEUROLOGY, V81, P1588, DOI 10.1212/WNL.0b013e3182a9f45f
  74. Mick E, 2017, STROKE, V48, P828, DOI 10.1161/STROKEAHA.116.015140
  75. Miller JA, 2008, J NEUROSCI, V28, P1410, DOI 10.1523/JNEUROSCI.4098-07.2008
  76. Moldovan L, 2014, J CELL MOL MED, V18, P371, DOI 10.1111/jcmm.12236
  77. Nelson PT, 2008, BRAIN PATHOL, V18, P130, DOI 10.1111/j.1750-3639.2007.00120.x
  78. Ouyang YB, 2014, NEUROCHEM INT, V77, P2, DOI 10.1016/j.neuint.2013.12.006
  79. Ouyang YB, 2014, NEUROSCI LETT, V565, P53, DOI 10.1016/j.neulet.2013.11.015
  80. Panda AC, 2017, NUCLEIC ACIDS RES, V45, P4021, DOI 10.1093/nar/gkw1201
  81. Peng GP, 2015, TRANSL STROKE RES, V6, P437, DOI 10.1007/s12975-015-0422-x
  82. Polimeni A, 2013, TRENDS CARDIOVAS MED, V23, P9, DOI 10.1016/j.tcm.2012.08.004
  83. Pordzik J, 2018, FRONT ENDOCRINOL, V9, DOI 10.3389/fendo.2018.00074
  84. Ridker PM, 2017, NEW ENGL J MED, V377, P1119, DOI 10.1056/NEJMoa1707914
  85. Roy S, 2011, LAB CHIP, V11, P1886, DOI 10.1039/c0lc00638f
  86. Sepramaniam S, 2014, INT J MOL SCI, V15, P1418, DOI 10.3390/ijms15011418
  87. Shannon P, 2003, GENOME RES, V13, P2498, DOI 10.1101/gr.1239303
  88. Singh V, 2016, ANTIOXID REDOX SIGN, V24, P635, DOI 10.1089/ars.2015.6397
  89. Sluijter JPG, 2013, CIRC-CARDIOVASC GENE, V6, P441, DOI 10.1161/CIRCGENETICS.113.000344
  90. Sorrentino S, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-017-19136-6
  91. Spinetti G, 2013, CIRC RES, V112, DOI 10.1161/CIRCRESAHA.111.300418
  92. Streit S, 2009, NAT PROTOC, V4, P37, DOI 10.1038/nprot.2008.216
  93. Sun J, 2016, J MOL NEUROSCI, V59, P90, DOI 10.1007/s12031-016-0717-8
  94. Szklarczyk D, 2017, NUCLEIC ACIDS RES, V45, pD362, DOI 10.1093/nar/gkw937
  95. Tan KS, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007689
  96. Tian CO, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0166688
  97. Tiedt S, 2017, CIRC RES, V121, P970, DOI 10.1161/CIRCRESAHA.117.311572
  98. Tijsen AJ, 2010, CIRC RES, V106, P1035, DOI 10.1161/CIRCRESAHA.110.218297
  99. Tran HV, 2013, BIOSENS BIOELECTRON, V49, P164, DOI 10.1016/j.bios.2013.05.007
  100. Tsai PC, 2013, J VASC RES, V50, P346, DOI 10.1159/000351767
  101. Varallyay E, 2008, NAT PROTOC, V3, P190, DOI 10.1038/nprot.2007.528
  102. Wang Hao, 2018, Oncotarget, V9, P5600, DOI 10.18632/oncotarget.23789
  103. Wang WH, 2014, J STROKE CEREBROVASC, V23, P2607, DOI 10.1016/j.jstrokecerebrovasdis.2014.06.002
  104. Wang Y, 2014, BMC NEUROL, V14, DOI 10.1186/1471-2377-14-77