Diminished cholesterol efflux mediated by HDL and coronary artery disease in young male anabolic androgenic steroid users

Carregando...
Imagem de Miniatura
Citações na Scopus
16
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER IRELAND LTD
Citação
ATHEROSCLEROSIS, v.283, p.100-105, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background and aims: Anabolic androgenic steroids (AAS) have been associated with coronary artery disease (CAD). AAS abuse leads to a remarkable decrease in high-density lipoprotein (HDL) plasma concentration, which could be a key factor in the atherosclerotic process. Moreover, not only the concentration of HDL, but also its functionality, plays a pivotal role in CAD. We tested the functionality of HDL by cholesterol efflux and antioxidant capacity. We also evaluated the prevalence of CAD in AAS users. Methods: Twenty strength-trained AAS users (AASU) age 29 +/- 5 yr, 20 age-matched strength-trained AAS nonusers (AASNU), and 10 sedentary controls (SC) were enrolled in this cross-sectional study. Functionality of HDL was evaluated by C-14-cholesterol efflux and the ability of HDL in inhibiting LDL oxidation. Coronary artery was evaluated with coronary computed tomography angiography. Results: Cholesterol efflux was lower in AASU compared with AASNU and SC (20 vs. 23 vs. 24%, respectively, p < 0.001). However, the lag time for LDL oxidation was higher in AASU compared with AASNU and SC (41 vs 13 vs 11 min, respectively, p < 0.001). We found at least 2 coronary arteries with plaques in 25% of AASU. None of the AASNU and SC had plaques. The time of AAS use was negatively associated with cholesterol efflux. Conclusions: This study indicates that AAS abuse impairs the cholesterol efflux mediated by HDL. Long-term AAS use seems to be correlated with lower cholesterol efflux and early subclinical CAD in this population.
Palavras-chave
Cholesterol efflux, HDL, Coronary artery disease, Anabolic androgenic steroid
Referências
  1. Abbara S, 2016, J CARDIOVASC COMPUT, V10, P435, DOI 10.1016/j.jcct.2016.10.002
  2. Angell PJ, 2014, EUR J APPL PHYSIOL, V114, P921, DOI 10.1007/s00421-014-2820-2
  3. Baggish AL, 2017, CIRCULATION, V135, P1991, DOI 10.1161/CIRCULATIONAHA.116.026945
  4. CASTELLI WP, 1988, CAN J CARDIOL, V4, pA5
  5. D'Agostino RB, 2008, CIRCULATION, V117, P743, DOI 10.1161/CIRCULATIONAHA.107.699579
  6. da Silva JL, 2011, ATHEROSCLEROSIS, V219, P532, DOI 10.1016/j.atherosclerosis.2011.08.014
  7. de Souza FR, 2019, SCAND J MED SCI SPOR, V29, P422, DOI 10.1111/sms.13332
  8. dos Santos MR, 2013, INT J SPORTS MED, V34, P931, DOI 10.1055/s-0032-1331741
  9. ESTERBAUER H, 1989, FREE RADICAL RES COM, V6, P67, DOI 10.3109/10715768909073429
  10. Fineschi V, 2007, INT J LEGAL MED, V121, P48, DOI 10.1007/s00414-005-0055-9
  11. Khera AV, 2011, NEW ENGL J MED, V364, P127, DOI 10.1056/NEJMoa1001689
  12. Kosmas CE, 2014, AM J MED SCI, V347, P504, DOI 10.1097/MAJ.0000000000000231
  13. MCNUTT RA, 1988, AM J CARDIOL, V62, P164, DOI 10.1016/0002-9149(88)91390-2
  14. Morikawa AT, 2012, STEROIDS, V77, P1321, DOI 10.1016/j.steroids.2012.08.004
  15. Motoyama S, 2009, J AM COLL CARDIOL, V54, P49, DOI 10.1016/j.jacc.2009.02.068
  16. Alves MJNN, 2010, MED SCI SPORT EXER, V42, P865, DOI 10.1249/MSS.0b013e3181c07b74
  17. dos Santos MAP, 2014, SUBST USE MISUSE, V49, P1132, DOI 10.3109/10826084.2014.903751
  18. Rubinow KB, 2012, J LIPID RES, V53, P1376, DOI 10.1194/jlr.P026005
  19. Santora Lawrence J, 2006, Prev Cardiol, V9, P198, DOI 10.1111/j.1559-4564.2006.05210.x
  20. Severo CB, 2013, EUR J PREV CARDIOL, V20, P195, DOI 10.1177/2047487312437062
  21. van de Kerkhof DH, 2000, J ANAL TOXICOL, V24, P102, DOI 10.1093/jat/24.2.102
  22. Wilson PWF, 1998, CIRCULATION, V97, P1837, DOI 10.1161/01.CIR.97.18.1837