Effects of Short-Term Hypothyroidism on the Lipid Transfer to High-Density Lipoprotein and Other Parameters Related to Lipoprotein Metabolism in Patients Submitted to Thyroidectomy for Thyroid Cancer

Carregando...
Imagem de Miniatura
Citações na Scopus
22
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
MARY ANN LIEBERT, INC
Citação
THYROID, v.29, n.1, p.53-58, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Elevation of low-density lipoprotein (LDL) cholesterol is the hallmark of the dyslipidemia observed in hypothyroidism, but alterations on high-density lipoprotein (HDL) plasma levels and metabolism are less understood. The aim of this study was to explore aspects of HDL metabolism and enzymes that act on HDL after a short period of overt hypothyroidism. Methods: Eighteen women (age 44 +/- 11 years; body mass index 27.9 +/- 5.2 kg/m(2)) were studied before total thyroidectomy for thyroid cancer, when they were euthyroid, and after thyroidectomy, in overt hypothyroidism for three weeks, following levothyroxine withdrawal for performance of a whole-body scan. Results: Thyrotropin and free thyroxine confirmed hypothyroidism; low thyroglobulin and radioiodine uptake indicated near absence of thyroid tissue. LDL cholesterol (125 +/- 35 vs. 167 +/- 40 mg/dL; p = 0.0002), HDL cholesterol (HDL-C; 39 +/- 8 vs. 46 +/- 10 mg/dL; p = 0.0025), non-HDL-C (149 +/- 38 vs. 201 +/- 46 mg/dL; p < 0.0001), unesterified cholesterol (53 +/- 10 vs. 70 +/- 16 mg/dL; p = 0.0003), apolipoprotein (apo) A-I (1.32 +/- 0.19 vs. 1.44 +/- 0.22 g/L; p < 0.04), and apo B (0.97 +/- 0.25 vs. 1.31 +/- 0.28 g/L; p < 0.0001) plasma concentrations were all higher in hypothyroidism compared to values in the euthyroid state, but triglycerides and Lp(a) were unchanged. There were no changes in HDL particle size and lipid composition, cholesteryl ester transfer protein and lecithin cholesterol acyltransferase concentrations and in paraoxonase-1 activity. Regarding the in vitro assay to estimate lipid transfer to HDL, there were no changes when comparing the euthyroid to the hypothyroid state, but when adjusted for HDL-C, the unesterified cholesterol (0.14 +/- 0.03 vs. 0.11 +/- 0.02; p < 0.0001), triglycerides (0.11 +/- 0.02 vs. 0.09 +/- 0.02; p < 0.0001), phospholipids (0.44 +/- 0.09 vs. 0.40 +/- 0.07; p = 0.0205), and esterified cholesterol (0.14 +/- 0.03 vs. 0.13 +/- 0.03; p = 0.0043) transfer to HDL were all diminished in hypothyroidism. Conclusions: In short-term hypothyroidism, HDL-C increased, but this did not increase the capacity of the HDL fraction to receive lipids or the activity of paraoxonase-1, the anti-oxidation enzyme associated to HDL.
Palavras-chave
hypothyroidism, lipoproteins, HDL function, cholesterol ester transfer protein (CETP), lecithin-cholesterol acyltransferase (LCAT), paraoxonase (PON-1)
Referências
  1. AGDEPPA D, 1979, J CLIN ENDOCR METAB, V49, P726, DOI 10.1210/jcem-49-5-726
  2. AVIRAM M, 1982, CLIN BIOCHEM, V15, P62, DOI 10.1016/S0009-9120(82)90529-X
  3. Beukhof CM, 2018, THYROID, V28, P168, DOI 10.1089/thy.2017.0330
  4. BRAGDON JH, 1956, CIRC RES, V4, P129, DOI 10.1161/01.RES.4.2.129
  5. Brenta G, 2016, THYROID, V26, P365, DOI 10.1089/thy.2015.0140
  6. Coria Mariela Janet, 2009, Acta Biomed, V80, P135
  7. Dedecjus M, 2003, CLIN ENDOCRINOL, V58, P581, DOI 10.1046/j.1365-2265.2003.01755.x
  8. Duntas LH, 2012, MED CLIN N AM, V96, P269, DOI 10.1016/j.mcna.2012.01.012
  9. Duntas LH, 2002, THYROID, V12, P287, DOI 10.1089/10507250252949405
  10. Franco M, 2003, MOL CELL BIOCHEM, V246, P51, DOI 10.1023/A:1023451811547
  11. Franco M, 2011, J THROID RES, DOI 10.4061/2011/321030
  12. FRIEDEWALD WT, 1972, CLIN CHEM, V18, P499
  13. GARIN MCB, 1994, BIOCHEM J, V304, P549
  14. Ginsberg HN, 1998, ENDOCRIN METAB CLIN, V27, P503, DOI 10.1016/S0889-8529(05)70023-2
  15. Jung KY, 2017, J CLIN LIPIDOL, V11, P1347, DOI 10.1016/j.jacl.2017.08.015
  16. KLAUSEN IC, 1992, METABOLISM, V41, P911, DOI 10.1016/0026-0495(92)90176-B
  17. Kobayashi J, 2015, J ATHEROSCLER THROMB, V22, P1001, DOI 10.5551/jat.31617
  18. Kontush A, 2006, PHARMACOL REV, V58, P342, DOI 10.1124/pr.58.3.1
  19. Lima ES, 2004, CLIN CHEM, V50, P1086, DOI 10.1373/clinchem.2004.032383
  20. LITHELL H, 1981, EUR J CLIN INVEST, V11, P3, DOI 10.1111/j.1365-2362.1981.tb01758.x
  21. Lo Prete AC, 2009, LIPIDS, V44, P917, DOI 10.1007/s11745-009-3342-2
  22. MACKNESS MI, 1991, ATHEROSCLEROSIS, V86, P193, DOI 10.1016/0021-9150(91)90215-O
  23. Maranhao RC, 2014, ADV CLIN CHEM, V65, P1, DOI 10.1016/B978-0-12-800141-7.00001-2
  24. Maranhao RC, 2012, CLIN CHIM ACTA, V413, P502, DOI 10.1016/j.cca.2011.11.011
  25. Marmillot P, 2007, METABOLISM, V56, P251, DOI 10.1016/j.metabol.2006.09.021
  26. Mason RL, 1930, NEW ENGL J MED, V203, P1273, DOI 10.1056/NEJM193012252032601
  27. McGowan A, 2016, THYROID, V26, P356, DOI 10.1089/thy.2015.0443
  28. Pearce EN, 2012, J CLIN ENDOCR METAB, V97, P326, DOI 10.1210/jc.2011-2532
  29. RIDGWAY ND, 1985, J LIPID RES, V26, P1300
  30. Ritter MC, 1996, J CLIN ENDOCR METAB, V81, P797, DOI 10.1210/jc.81.2.797
  31. Rosenson RS, 2016, NAT REV CARDIOL, V13, P48, DOI 10.1038/nrcardio.2015.124
  32. Sigal GA, 2011, THYROID, V21, P347, DOI 10.1089/thy.2010.0313
  33. Singh Sarika, 2014, Acta Biomed, V85, P127
  34. Skoczynska A, 2016, MED SCI MONITOR, V22, P4661, DOI 10.12659/MSM.898134
  35. Sprandel MCO, 2015, CARDIOVASC DIABETOL, V14, DOI 10.1186/s12933-015-0270-8
  36. Tan KCB, 1998, J CLIN ENDOCR METAB, V83, P2921, DOI 10.1210/jc.83.8.2921
  37. Tan KCB, 1998, J CLIN ENDOCR METAB, V83, P140, DOI 10.1210/jc.83.1.140
  38. Tzotzas T, 2000, THYROID, V10, P803, DOI 10.1089/thy.2000.10.803