MicroRNA-135a-3p regulates angiogenesis and tissue repair by targeting p38 signaling in endothelial cells

Carregando...
Imagem de Miniatura
Citações na Scopus
53
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
FEDERATION AMER SOC EXP BIOL
Autores
ICLI, Basak
WU, Winona
OZDEMIR, Denizhan
LI, Hao
HAEMMIG, Stefan
LIU, Xin
GIATSIDIS, Giorgio
CHENG, Henry S.
AVCI, Seyma Nazli
KURT, Merve
Citação
FASEB JOURNAL, v.33, n.4, p.5599-5614, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Angiogenesis is a critical process in repair of tissue injury that is regulated by a delicate balance between pro- and antiangiogenic factors. In disease states associated with impaired angiogenesis, we identified that miR-135a-3p is rapidly induced and serves as an antiangiogenic microRNA (miRNA) by targeting endothelial cell (EC) p38 signaling in vitro and in vivo. MiR-135a-3p overexpression significantly inhibited EC proliferation, migration, and network tube formation in matrigel, whereas miR-135-3p neutralization had the opposite effects. Mechanistic studies using transcriptomic profiling, bioinformatics, 3'-UTR reporter and miRNA ribonucleoprotein complex -immunoprecipitation assays, and small interfering RNA dependency studies revealed that miR-135a-3p inhibits the p38 signaling pathway in ECs by targeting huntingtin-interacting protein 1 (HIP1). Local delivery of miR-135a-3p inhibitors to wounds of diabetic db/db mice markedly increased angiogenesis, granulation tissue thickness, and wound closure rates, whereas local delivery of miR-135a-3p mimics impaired these effects. Finally, through gain- and loss-of-function studies in human skin organoids as a model of tissue injury, we demonstrated that miR-135a-3p potently modulated p38 signaling and angiogenesis in response to VEGF stimulation by targeting HIP1. These findings establish miR-135a-3p as a pivotal regulator of pathophysiological angiogenesis and tissue repair by targeting a VEGF-HIP1-p38K signaling axis, providing new targets for angiogenic therapy to promote tissue repair.
Palavras-chave
VEGF, diabetic wounds, human organoid
Referências
  1. Avogaro A, 2011, DIABETES CARE, V34, pS285, DOI 10.2337/dc11-s239
  2. Balaji S, 2014, J SURG RES, V190, P358, DOI 10.1016/j.jss.2014.02.027
  3. Belch J, 2011, LANCET, V377, P1929, DOI 10.1016/S0140-6736(11)60394-2
  4. Bergers G, 2008, NAT REV CANCER, V8, P592, DOI 10.1038/nrc2442
  5. Bernardo BC, 2012, P NATL ACAD SCI USA, V109, P17615, DOI 10.1073/pnas.1206432109
  6. Bonauer A, 2010, CURR DRUG TARGETS, V11, P943, DOI 10.2174/138945010791591313
  7. Bradley SV, 2007, CANCER RES, V67, P3609, DOI 10.1158/0008-5472.CAN-06-4803
  8. Cannizzo CM, 2018, FASEB J, V32, P2911, DOI 10.1096/fj.201700617R
  9. Caputo M, 2015, ADV DRUG DELIVER REV, V88, P78, DOI 10.1016/j.addr.2015.05.003
  10. Chamorro-Jorganes A, 2013, PHARMACOL RES, V75, P15, DOI 10.1016/j.phrs.2013.04.002
  11. Creager MA, 2011, CIRCULATION, V124, P1765, DOI 10.1161/CIRCULATIONAHA.110.009407
  12. Cully M, 2010, MOL CELL BIOL, V30, P481, DOI 10.1128/MCB.00688-09
  13. Doebele C, 2010, BLOOD, V115, P4944, DOI 10.1182/blood-2010-01-264812
  14. Erba P, 2011, ANN SURG, V253, P402, DOI 10.1097/SLA.0b013e31820563a8
  15. Falanga V, 2005, LANCET, V366, P1736, DOI 10.1016/S0140-6736(05)67700-8
  16. Fasanaro P, 2008, J BIOL CHEM, V283, P15878, DOI 10.1074/jbc.M800731200
  17. Findley CM, 2008, J AM COLL CARDIOL, V52, P387, DOI 10.1016/j.jacc.2008.02.045
  18. Gee E, 2010, J CELL PHYSIOL, V222, P120, DOI 10.1002/jcp.21924
  19. Ghosh G, 2010, J CLIN INVEST, V120, P4141, DOI 10.1172/JCI42980
  20. Goligorsky MS, 2005, AM J PHYSIOL-RENAL, V288, pF871, DOI 10.1152/ajprenal.00333.2004
  21. Goveia J, 2014, EMBO MOL MED, V6, P1105, DOI 10.15252/emmm.201404156
  22. Greene AK, 2006, ANN PLAS SURG, V56, P418, DOI 10.1097/01.sap.0000202831.43294.02
  23. Grossman PM, 2007, AM HEART J, V153, P874, DOI 10.1016/j.ahj.2007.01.038
  24. Hazarika S, 2007, CIRC RES, V101, P948, DOI 10.1161/CIRCRESAHA.107.160630
  25. Hojo Y, 2000, J AM COLL CARDIOL, V35, P968, DOI 10.1016/S0735-1097(99)00632-4
  26. Icli B, 2016, J MOL CELL CARDIOL, V91, P151, DOI 10.1016/j.yjmcc.2016.01.007
  27. Icli B, 2013, CIRC RES, V113, P1231, DOI 10.1161/CIRCRESAHA.113.301780
  28. Iyer Sunil R, 2017, JACC Basic Transl Sci, V2, P503, DOI 10.1016/j.jacbts.2017.07.012
  29. Jones WS, 2007, CURR OPIN CARDIOL, V22, P458, DOI 10.1097/HCO.0b013e328236741b
  30. Kawamoto A, 1998, INT J CARDIOL, V67, P47, DOI 10.1016/S0167-5273(98)00251-4
  31. Kir D, 2018, ANGIOGENESIS, V21, P699, DOI 10.1007/s10456-018-9632-7
  32. Krishna SM, 2015, INT J MOL SCI, V16, P11294, DOI 10.3390/ijms160511294
  33. Kusumanto YH, 2006, HUM GENE THER, V17, P683, DOI 10.1089/hum.2006.17.683
  34. Landskroner-Eiger S, 2013, CSH PERSPECT MED, V3, DOI 10.1101/cshperspect.a006643
  35. Laragione T, 2018, ANN RHEUM DIS, V77, P1627, DOI 10.1136/annrheumdis-2018-213498
  36. Lee R, 2012, CURR VASC PHARMACOL, V10, P77, DOI 10.2174/157016112798829751
  37. Li J, 1996, AM J PHYSIOL-HEART C, V270, pH1803
  38. Ma N, 2013, GENETICS, V195, P457, DOI 10.1534/genetics.113.154674
  39. Matsumoto T, 2002, J CELL BIOL, V156, P149, DOI 10.1083/jcb.200103096
  40. Medicherla S, 2009, DIABET METAB SYND OB, V2, P91
  41. Melero-Martin JM, 2008, METHOD ENZYMOL, V445, P303, DOI 10.1016/S0076-6879(08)03013-9
  42. Menghini R, 2009, CIRCULATION, V120, P1524, DOI 10.1161/CIRCULATIONAHA.109.864629
  43. Nakajima K, 2004, CLIN CARDIOL, V27, P281, DOI 10.1002/clc.4960270509
  44. Nebbioso A, 2010, J MOL ENDOCRINOL, V45, P219, DOI 10.1677/JME-10-0043
  45. Nicoli S, 2010, NATURE, V464, P1196, DOI 10.1038/nature08889
  46. Ozdemir D, 2019, TRENDS CARDIOVAS MED, V29, P131, DOI 10.1016/j.tcm.2018.08.002
  47. Peng C, 2011, PLAST RECONSTR SURG, V128, p673E, DOI 10.1097/PRS.0b013e318230c521
  48. Potente M, 2011, CELL, V146, P873, DOI 10.1016/j.cell.2011.08.039
  49. Powell RJ, 2008, CIRCULATION, V118, P58, DOI 10.1161/CIRCULATIONAHA.107.727347
  50. Prabhu SD, 2016, CIRC RES, V119, P91, DOI 10.1161/CIRCRESAHA.116.303577
  51. Rajagopalan S, 2003, CIRCULATION, V108, P1933, DOI 10.1161/01.CIR.0000093398.16124.29
  52. Rao DS, 2003, CANCER CELL, V3, P471, DOI 10.1016/S1535-6108(03)00107-7
  53. Rao DS, 2002, J CLIN INVEST, V110, P351, DOI 10.1172/JCI200215529
  54. Rose BA, 2017, J BIOL CHEM, V292, P12787, DOI 10.1074/jbc.M117.784553
  55. Sacilotto N, 2016, GENE DEV, V30, P2297, DOI 10.1101/gad.290619.116
  56. Song GD, 2010, WOUND REPAIR REGEN, V18, P426, DOI 10.1111/j.1524-475X.2010.00595.x
  57. Suarez Y, 2008, P NATL ACAD SCI USA, V105, P14082, DOI 10.1073/pnas.0804597105
  58. Sun L, 2009, AGEING RES REV, V8, P306, DOI 10.1016/j.arr.2009.04.003
  59. Sun XH, 2012, J CLIN INVEST, V122, P1973, DOI 10.1172/JCI61495
  60. Turkson J, 1999, MOL CELL BIOL, V19, P7519
  61. Wara AK, 2011, BLOOD, V118, P6461, DOI 10.1182/blood-2011-06-363457
  62. Wara AK, 2011, BLOOD, V118, P6450, DOI 10.1182/blood-2011-06-363713
  63. Welti J, 2013, J CLIN INVEST, V123, P3190, DOI 10.1172/JCI70212
  64. Yoshizuka N, 2012, MOL CELL BIOL, V32, P606, DOI 10.1128/MCB.06301-11
  65. Yu JQ, 2004, J BIOL CHEM, V279, P50446, DOI 10.1074/jbc.M409221200