Peri/epicellular protein disulfide isomerase-A1 acts as an upstream organizer of cytoskeletal mechanoadaptation in vascular smooth muscle cells

Carregando...
Imagem de Miniatura
Citações na Scopus
16
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER PHYSIOLOGICAL SOC
Autores
I, Andres Rodriguez
FERRAZ, Mariana S.
PELEGATI, Vitor B.
SANTOS, Aline M. dos
CESAR, Carlos L.
ALENCAR, Adriano M.
Citação
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, v.316, n.3, p.H566-H579, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Although redox processes closely interplay with mechanoresponses to control vascular remodeling, redox pathways coupling mechanostimulation to cellular cytoskeletal organization remain unclear. The peri/epicellular pool of protein disulfide isomerase-A1 (pecPDIA1) supports postinjury vessel remodeling. Using distinct models, we investigated whether pecPDIA1 could work as a redox-dependent organizer of cytoskeletal mechanoresponses. In vascular smooth muscle cells (VSMCs), pecPDIA1 immunoneutralization impaired stress fiber assembly in response to equibiaxial stretch and, under uniaxial stretch, significantly perturbed cell repositioning perpendicularly to stretch orientation. During cyclic stretch, pecPDIA1 supported thiol oxidation of the known mechanosensor beta(1)-integrin and promoted polarized compartmentalization of suifenylated proteins. Using traction force microscopy, we showed that pecPDIA1 organizes intracellular force distribution. The net contractile moment ratio of platelet-derived growth factor-exposed to basal VSMCs decreased from 0.90 +/- 0.09 (IgG-exposed controls) to 0.70 +/- 0.08 after pecPDIA1 neutralization (P < 0.05), together with an enhanced coefficient of variation for distribution of force modules, suggesting increased noise. Moreover, in a single cell model, pecPDIA1 neutralization impaired migration persistence without affecting total distance or velocity, whereas siRNA-mediated total PDIA1 silencing disabled all such variables of VSMC migration. Neither expression nor total activity of the master mechanotransmitter/regulator RhoA was affected by pecPDIA1 neutralization. However, cyclic stretch-induced focal distribution of membrane-bound RhoA was disrupted by pecPDI inhibition, which promoted a nonpolarized pattern of RhoA/caveolin-3 cluster colocalization. Accordingly, FRET biosensors showed that pecPDIA1 supports localized RhoA activity at cell protrusions versus perinuclear regions. Thus. pecPDI acts as a thiol redox-dependent organizer and noise reducer mechanism of cytoskeletal repositioning, oxidant generation, and localized RhoA activation during a variety of VSMC mechanoresponses. NEW & NOTEWORTHY Effects of a peri/epicellular pool of protein disulfide isomerase-A1 (pecPDIA1) during mechanoregulation in vascular smooth muscle cells (VSMCs) were highlighted using approaches such as equibiaxial and uniaxial stretch, random single cell migration, and traction force microscopy. pecPDIA1 regulates organization of the cytoskeleton and minimizes the noise of cell alignment, migration directionality, and persistence. pecPDIA1 mechanisms involve redox control of beta(1)-integrin and localized RhoA activation. pecPDIA1 acts as a novel organizer of mechanoadaptation responses in VSMCs.
Palavras-chave
cytoskeleton, mechanobiology, protein disulfide isomerase, redox, vascular smooth muscle cells
Referências
  1. Araujo TLS, 2017, FREE RADICAL BIO MED, V103, P199, DOI 10.1016/j.freeradbiomed.2016.12.021
  2. Benham AM, 2012, ANTIOXID REDOX SIGN, V16, P781, DOI 10.1089/ars.2011.4439
  3. Burgess A, 2010, P NATL ACAD SCI USA, V107, P12564, DOI 10.1073/pnas.0914191107
  4. Butler JP, 2002, AM J PHYSIOL-CELL PH, V282, pC595, DOI 10.1152/ajpcell.00270.2001
  5. Cameron JM, 2015, CURR BIOL, V25, P1520, DOI 10.1016/j.cub.2015.04.020
  6. Crescente M, 2016, ARTERIOSCL THROM VAS, V36, P1164, DOI 10.1161/ATVBAHA.116.307461
  7. Dajnowiec D, 2007, CLIN SCI, V113, P15, DOI 10.1042/CS200602337
  8. Damughatla AR, 2015, J MAGN RESON IMAGING, V41, P44, DOI 10.1002/jmri.24506
  9. Datla SR, 2014, AM J PHYSIOL-HEART C, V307, pH945, DOI 10.1152/ajpheart.00918.2013
  10. DOBRIN PB, 1978, PHYSIOL REV, V58, P397
  11. Dovas A, 2005, BIOCHEM J, V390, P1, DOI 10.1042/BJ20050104
  12. Eble JA, 2014, ANTIOXID REDOX SIGN, V20, P1977, DOI 10.1089/ars.2013.5294
  13. Fernandes DC, 2007, AM J PHYSIOL-CELL PH, V292, pC413, DOI 10.1152/ajpcell.00188.2006
  14. Fernandes DC, 2009, ARCH BIOCHEM BIOPHYS, V484, P197, DOI 10.1016/j.abb.2009.01.022
  15. Flaumenhaft R, 2016, BLOOD, V128, P893, DOI 10.1182/blood-2016-04-636456
  16. Goldyn AM, 2009, J CELL SCI, V122, P3644, DOI 10.1242/jcs.054866
  17. Hahn C, 2009, NAT REV MOL CELL BIO, V10, P53, DOI 10.1038/nrm2596
  18. Janiszewski M, 2005, J BIOL CHEM, V280, P40813, DOI 10.1074/jbc.M509255200
  19. Kawamura S, 2003, J BIOL CHEM, V278, P31111, DOI 10.1074/jbc.M300725200
  20. Krishnan R, 2011, AM J PHYSIOL-CELL PH, V300, pC146, DOI 10.1152/ajpcell.00195.2010
  21. Lahav J, 2002, BLOOD, V100, P2472, DOI 10.1182/blood-2002-12-0339
  22. Laurindo FRM, 2012, FREE RADICAL BIO MED, V52, P1954, DOI 10.1016/j.freeradbiomed.2012.02.037
  23. Montenegro MF, 2015, FREE RADICAL BIO MED, V85, P288, DOI 10.1016/j.freeradbiomed.2015.05.011
  24. Moretti AIS, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-16947-5
  25. Ochoa CD, 2008, AM J RESP CELL MOL, V39, P105, DOI 10.1165/rcmb.2007-0283OC
  26. Peixoto AS, 2018, J BIOL CHEM, V293, P1450, DOI 10.1074/jbc.M117.807016
  27. Pereira MBM, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7508
  28. Pereira MBM, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6159
  29. Pertz O, 2006, NATURE, V440, P1069, DOI 10.1038/nature04665
  30. Pescatore LA, 2012, J BIOL CHEM, V287, P29290, DOI 10.1074/jbc.M112.394551
  31. Rodriguez AI, 2015, ARTERIOSCL THROM VAS, V35, P430, DOI 10.1161/ATVBAHA.114.304936
  32. Sadok A, 2009, MOL CELL BIOL, V29, P3915, DOI 10.1128/MCB.01199-08
  33. Sathyanesan A, 2012, J NEUROSCI METH, V206, P165, DOI 10.1016/j.jneumeth.2012.02.019
  34. Schad JF, 2011, VASC CELL, V3, DOI 10.1186/2045-824X-3-21
  35. Moretti AIS, 2017, ARCH BIOCHEM BIOPHYS, V617, P106, DOI 10.1016/j.abb.2016.11.007
  36. Tanaka LY, 2017, FREE RADICAL BIO MED, V109, P11, DOI 10.1016/j.freeradbiomed.2017.01.025
  37. Tanaka LY, 2016, HYPERTENSION, V67, P613, DOI 10.1161/HYPERTENSIONAHA.115.06177
  38. Wang C, 2012, J BIOL CHEM, V287, P1139, DOI 10.1074/jbc.M111.303149
  39. Zhang WW, 2012, J BIOL CHEM, V287, P33996, DOI 10.1074/jbc.M112.369603