Contributions of the Melanopsin-Expressing Ganglion Cells, Cones, and Rods to the Pupillary Light Response in Obstructive Sleep Apnea

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ASSOC RESEARCH VISION OPHTHALMOLOGY INC
Autores
DUQUE-CHICA, Gloria L.
GRACITELLI, Carolina P. B.
MOURA, Ana L. A.
NAGY, Balazs V.
VIDAL, Kallene S.
MELO, Geraldine de
PARANHOS JR., Augusto
VENTURA, Dora F.
Citação
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, v.60, n.8, p.3002-3012, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
PURPOSE. To investigate the impact of obstructive sleep apnea (OSA) on the contribution of inner and outer retinal photoreceptors to the pupillary light response (PLR). METHODS. Ninety-three eyes from 27 patients with OSA and 25 healthy controls were tested. OSA severity was graded according to the apnea-hypopnea index. PLR was measured monocularly with an eye tracker in a Ganzfeld in response to 1-second blue (470 nm) and red (640 nm) flashes at -3, -2, -1, 0, 1, 2, and 2.4 log cd/m(2). Peak pupil constriction amplitude, peak latency, and the postillumination pupil response were measured. The Cambridge Colour Test, standard automatic perimetry, spectral domain optical coherence tomography, polysomnography, and the Pittsburgh Sleep Quality Index were used. RESULTS. OSA patients have a significantly decreased peak pupil constriction amplitude for blue stimuli at -3, -2, -1, 1 log cd/m(2) and at all red flash luminances (P < 0.050), revealing reduction of outer retina contributions to PLR. OSA patients showed reduced peak latency for blue (-2, 0, 2, 2.4 log cd/m(2)) and red stimuli (-2, 0 log cd/m(2); P < 0.040). No significant difference was found in the melanopsin-mediated PLR. CONCLUSIONS. This study is the first to evaluate the inner and outer retinal contributions to PLR in OSA patients. The results showed that the outer retinal photoreceptor contributions to PLR were affected in moderate and severe OSA patients. In contrast, the inner retina contributions to PLR are preserved.
Palavras-chave
obstructive sleep apnea, pupillary light responses, classical photoreceptors, intrinsically photosensitive retinal ganglion cells, circadian rhythm, retinal nerve fiber layer thickness, visual field defect
Referências
  1. Adam M, 2013, J OPHTHALMOL, DOI 10.1155/2013/292158
  2. Alasil T, 2013, J GLAUCOMA, V22, P532, DOI 10.1097/IJG.0b013e318255bb4a
  3. Altimus CM, 2010, NAT NEUROSCI, V13, P1107, DOI 10.1038/nn.2617
  4. Bardak H, 2016, BIOMED RES INT, V2016, P1
  5. Barrionuevo PA, 2014, INVEST OPHTH VIS SCI, V55, P719, DOI 10.1167/iovs.13-13252
  6. Bergamin O, 2003, OPHTHALMOLOGY, V110, P106, DOI 10.1016/S0161-6420(02)01445-8
  7. Bergamin O, 2003, INVEST OPHTH VIS SCI, V44, P1546, DOI 10.1167/iovs.02-0468
  8. Berson DM, 2002, SCIENCE, V295, P1070, DOI 10.1126/science.1067262
  9. Birol G, 2007, AM J PHYSIOL-HEART C, V293, pH1696, DOI 10.1152/ajpheart.00221.2007
  10. Brown TM, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000558
  11. Brzezinski Amnon, 1997, New England Journal of Medicine, V336, P186
  12. Buratti L, 2014, J ALZHEIMERS DIS, V38, P445, DOI 10.3233/JAD-131046
  13. Butler MP, 2015, SLEEP, V38, P1793, DOI 10.5665/sleep.5166
  14. BUYSSE DJ, 1989, PSYCHIAT RES, V28, P193, DOI 10.1016/0165-1781(89)90047-4
  15. Chen SK, 2011, NATURE, V476, P92, DOI 10.1038/nature10206
  16. CHYLACK LT, 1993, ARCH OPHTHALMOL-CHIC, V111, P831, DOI 10.1001/archopht.1993.01090060119035
  17. Cinici E, 2015, INT J PEDIATR OTORHI, V79, P1218, DOI 10.1016/j.ijporl.2015.05.017
  18. Cui Q, 2015, NEUROSCIENCE, V284, P845, DOI 10.1016/j.neuroscience.2014.11.002
  19. Dacey DM, 2005, NATURE, V433, P749, DOI 10.1038/nature03387
  20. De Cock VC, 2015, SLEEP MED, V16, P1497, DOI 10.1016/j.sleep.2014.09.014
  21. Duque-Chica GL, 2018, J GLAUCOMA, V27, P723, DOI 10.1097/IJG.0000000000001003
  22. Ecker JL, 2010, NEURON, V67, P49, DOI 10.1016/j.neuron.2010.05.023
  23. Feigl B, 2014, OPTOMETRY VISION SCI, V91, P894, DOI 10.1097/OPX.0000000000000284
  24. Feigl B, 2012, ACTA OPHTHALMOL, V90, pe230, DOI 10.1111/j.1755-3768.2011.02226.x
  25. Feigl B, 2011, INVEST OPHTH VIS SCI, V52, P4362, DOI 10.1167/iovs.10-7069
  26. Ferrandez B, 2016, OPHTHALMIC RES, V56, P85, DOI 10.1159/000445353
  27. Ferrandez B, 2016, BMC OPHTHALMOL, V16, DOI 10.1186/s12886-016-0216-2
  28. Gamlin PDR, 2007, VISION RES, V47, P946, DOI 10.1016/j.visres.2006.12.015
  29. Glacet-Bernard A, 2010, ARCH OPHTHALMOL-CHIC, V128, P1533, DOI 10.1001/archophthalmol.2010.272
  30. Gooley JJ, 2012, J NEUROSCI, V32, P14242, DOI 10.1523/JNEUROSCI.1321-12.2012
  31. Gozal D, 2013, RESP PHYSIOL NEUROBI, V185, P177, DOI 10.1016/j.resp.2012.08.019
  32. Gracitelli CPB, 2014, INVEST OPHTH VIS SCI, V55, P7997, DOI 10.1167/iovs.14-15146
  33. Guler AD, 2008, NATURE, V453, P102, DOI 10.1038/nature06829
  34. GUILLEMINAULT C, 1976, ANNU REV MED, V27, P465, DOI 10.1146/annurev.me.27.020176.002341
  35. Hannibal J, 2017, J COMP NEUROL, V525, P1934, DOI 10.1002/cne.24181
  36. Hastings M, 2007, J ENDOCRINOL, V195, P187, DOI 10.1677/JOE-07-0378
  37. Hernandez C, 2007, EUR RESPIR J, V30, P496, DOI 10.1183/09031936.00051906
  38. Huseyinoglu N, 2014, SLEEP BREATH, V18, P95, DOI 10.1007/s11325-013-0854-z
  39. Iber C., 2007, AASM MANUAL SCORING, V1
  40. Joyce DS, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-26078-0
  41. Kankipati L, 2010, INVEST OPHTH VIS SCI, V51, P2764, DOI 10.1167/iovs.09-4717
  42. Kardon R, 2011, OPHTHALMOLOGY, V118, P376, DOI 10.1016/j.ophtha.2010.06.033
  43. Kardon R, 2009, OPHTHALMOLOGY, V116, P1564, DOI 10.1016/j.ophtha.2009.02.007
  44. Kargi SH, 2005, EYE, V19, P575, DOI 10.1038/sj.eye.6701582
  45. Keenan WT, 2016, ELIFE, V5, DOI 10.7554/eLife.15392
  46. Kostic C, 2016, INVEST OPHTH VIS SCI, V57, P2501, DOI 10.1167/iovs.16-19150
  47. La Morgia C, 2010, BRAIN, V133, P2426, DOI 10.1093/brain/awq155
  48. Lanfranchi P, 2001, RESPIR RES, V2, P315, DOI 10.1186/rr79
  49. Lemmer B, 2016, BLOOD PRESS MONIT, V21, P136, DOI 10.1097/MBP.0000000000000173
  50. Leon L, 2012, CLIN EXP OPHTHALMOL, V40, pE16, DOI 10.1111/j.1442-9071.2011.02665.x
  51. Levy P, 2009, PROG CARDIOVASC DIS, V51, P400, DOI 10.1016/j.pcad.2008.03.001
  52. Li RS, 2006, INVEST OPHTH VIS SCI, V47, P2951, DOI 10.1167/iovs.05-1295
  53. Liguori C, 2016, SLEEP, V39, P19, DOI 10.5665/sleep.5308
  54. Lucas RJ, 2014, TRENDS NEUROSCI, V37, P1, DOI 10.1016/j.tins.2013.10.004
  55. Duarte AAM, 2016, REV NUTR, V29, P765, DOI 10.1590/1678-98652016000600002
  56. McDougal DH, 2010, VISION RES, V50, P72, DOI 10.1016/j.visres.2009.10.012
  57. McNab AA, 1997, OPHTHALMIC PLAST REC, V13, P98, DOI 10.1097/00002341-199706000-00005
  58. McNab AA, 2005, CLIN EXP OPHTHALMOL, V33, P117, DOI 10.1111/j.1442-9071.2005.00969.x
  59. Moghimi S, 2013, SLEEP MED, V14, P53, DOI 10.1016/j.sleep.2012.07.004
  60. Mojon DS, 1999, OPHTHALMOLOGY, V106, P1009, DOI 10.1016/S0161-6420(99)00525-4
  61. Mojon DS, 2002, ARCH OPHTHALMOL-CHIC, V120, P601, DOI 10.1001/archopht.120.5.601
  62. Monaco A, 2014, CRANIO, V32, P139, DOI 10.1179/0886963413Z.00000000022
  63. Moura ALA, 2013, INVEST OPHTH VIS SCI, V54, P4471, DOI 10.1167/iovs.12-11137
  64. Muller LPD, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093274
  65. Munch M, 2012, INVEST OPHTH VIS SCI, V53, P4546, DOI 10.1167/iovs.12-9494
  66. Murdoch IE, 1998, BRIT J OPHTHALMOL, V82, P971, DOI 10.1136/bjo.82.8.971
  67. Ng SH, 2017, INT EYE SCI, V17, P5
  68. O'Brien LM, 2005, SLEEP, V28, P747, DOI 10.1093/sleep/28.6.747
  69. Park JC, 2011, INVEST OPHTH VIS SCI, V52, P6624, DOI 10.1167/iovs.11-7586
  70. Peppard PE, 2013, AM J EPIDEMIOL, V177, P1006, DOI 10.1093/aje/kws342
  71. Peppard PE, 2000, NEW ENGL J MED, V342, P1378, DOI 10.1056/NEJM200005113421901
  72. Provencio I, 2000, J NEUROSCI, V20, P600, DOI 10.1523/JNEUROSCI.20-02-00600.2000
  73. Reutrakul S, 2017, CHRONOBIOL INT, V34, P382, DOI 10.1080/07420528.2016.1278382
  74. Sae-Teaw M, 2013, J PINEAL RES, V55, P58, DOI 10.1111/jpi.12025
  75. Salzgeber R, 2014, KLIN MONATSBL AUGENH, V231, P340, DOI 10.1055/s-0034-1368260
  76. Schmidt TM, 2014, NEURON, V82, P781, DOI 10.1016/j.neuron.2014.03.022
  77. Senaratna CV, 2017, SLEEP MED REV, V34, P70, DOI 10.1016/j.smrv.2016.07.002
  78. Sergi M, 2007, J GLAUCOMA, V16, P42, DOI 10.1097/01.ijg.0000243472.51461.24
  79. Shiba T, 2014, AM J OPHTHALMOL, V157, P1202, DOI 10.1016/j.ajo.2014.01.028
  80. Sivaprasad S, 2016, EYE, V30, P189, DOI 10.1038/eye.2015.254
  81. Sun CL, 2016, MEDICINE, V95, DOI 10.1097/MD.0000000000004499
  82. Tsang CSL, 2006, EYE, V20, P38, DOI 10.1038/sj.eye.6701785
  83. Ventura DF, 2017, COGNITIVE SCI RECENT, P73
  84. Vural AD, 2014, RETINA-J RET VIT DIS, V34, P1223, DOI 10.1097/IAE.0000000000000043
  85. Wang ST, 2018, NEUROSCI LETT, V662, P368, DOI 10.1016/j.neulet.2017.10.055
  86. Xin C, 2015, SLEEP BREATH, V19, P129, DOI 10.1007/s11325-014-0978-9
  87. Yu DY, 2001, PROG RETIN EYE RES, V20, P175, DOI 10.1016/S1350-9462(00)00027-6
  88. Yu J, 2017, INVEST OPHTH VIS SCI, V58, P3506, DOI 10.1167/iovs.17-21414
  89. Zaidi FH, 2007, CURR BIOL, V17, P2122, DOI 10.1016/j.cub.2007.11.034
  90. ZEGER SL, 1986, BIOMETRICS, V42, P121, DOI 10.2307/2531248
  91. Zele AJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017860
  92. Zengin MO, 2014, INT J OPHTHALMOL-CHI, V7, P704, DOI 10.3980/j.issn.2222-3959.2014.04.22
  93. Zhao XJ, 2016, J GLAUCOMA, V25, pE413, DOI 10.1097/IJG.0000000000000349