Avian host composition, local speciation and dispersal drive the regional assembly of avian malaria parasites in South American birds

Carregando...
Imagem de Miniatura
Citações na Scopus
54
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
FECCHIO, Alan
BELL, Jeffrey A.
PINHEIRO, Rafael B. P.
CUETO, Victor R.
GOROSITO, Cristian A.
LUTZ, Holly L.
GAIOTTI, Milene G.
PAIVA, Luciana V.
FRANCA, Leonardo F.
TOLEDO-LIMA, Guilherme
Citação
MOLECULAR ECOLOGY, v.28, n.10, p.2681-2693, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Identifying the ecological factors that shape parasite distributions remains a central goal in disease ecology. These factors include dispersal capability, environmental filters and geographic distance. Using 520 haemosporidian parasite genetic lineages recovered from 7,534 birds sampled across tropical and temperate South America, we tested (a) the latitudinal diversity gradient hypothesis and (b) the distance-decay relationship (decreasing proportion of shared species between communities with increasing geographic distance) for this host-parasite system. We then inferred the biogeographic processes influencing the diversity and distributions of this cosmopolitan group of parasites across South America. We found support for a latitudinal gradient in diversity for avian haemosporidian parasites, potentially mediated through higher avian host diversity towards the equator. Parasite similarity was correlated with climate similarity, geographic distance and host composition. Local diversification in Amazonian lineages followed by dispersal was the most frequent biogeographic events reconstructed for haemosporidian parasites. Combining macroecological patterns and biogeographic processes, our study reveals that haemosporidian parasites are capable of circumventing geographic barriers and dispersing across biomes, although constrained by environmental filtering. The contemporary diversity and distributions of haemosporidian parasites are mainly driven by historical (speciation) and ecological (dispersal) processes, whereas the parasite community assembly is largely governed by host composition and to a lesser extent by environmental conditions.
Palavras-chave
community assembly, disease ecology, latitudinal diversity gradient, macroecology, parasite biogeography, parasite dispersal
Referências
  1. Antonelli A, 2018, P NATL ACAD SCI USA, V115, P6034, DOI 10.1073/pnas.1713819115
  2. Batalha H, 2013, J ORNITHOL, V154, P41, DOI 10.1007/s10336-012-0866-7
  3. Bell JA, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-0993-0
  4. Bensch S, 2004, EVOLUTION, V58, P1617, DOI 10.1554/04-026
  5. Bensch S, 2009, MOL ECOL RESOUR, V9, P1353, DOI 10.1111/j.1755-0998.2009.02692.x
  6. Bordes F., 2010, BIOGEOGRAPHY HOST PA, P89
  7. Bordes F, 2011, OIKOS, V120, P1889, DOI 10.1111/j.1600-0706.2011.19314.x
  8. Borner J, 2016, MOL PHYLOGENET EVOL, V94, P221, DOI 10.1016/j.ympev.2015.09.003
  9. BRAY JR, 1957, ECOL MONOGR, V27, P326
  10. Brooks DR, 2006, ECOLOGY, V87, pS76, DOI 10.1890/0012-9658(2006)87[76:EFAADO]2.0.CO;2
  11. Clark NJ, 2018, GLOBAL ECOL BIOGEOGR, V27, P744, DOI 10.1111/geb.12741
  12. Clark NJ, 2018, DIVERS DISTRIB, V24, P13, DOI 10.1111/ddi.12661
  13. Clark NJ, 2017, MOL ECOL, V26, P3074, DOI 10.1111/mec.14101
  14. Clark NJ, 2014, INT J PARASITOL, V44, P329, DOI 10.1016/j.ijpara.2014.01.004
  15. Core Team R, 2018, R LANG ENV STAT COMP
  16. Costa LP, 2003, J BIOGEOGR, V30, P71, DOI 10.1046/j.1365-2699.2003.00792.x
  17. Dallas TA, 2018, GLOBAL ECOL BIOGEOGR, V27, P1437, DOI 10.1111/geb.12819
  18. Darriba D, 2012, NAT METHODS, V9, P772, DOI 10.1038/nmeth.2109
  19. Davies TJ, 2008, P ROY SOC B-BIOL SCI, V275, P1695, DOI 10.1098/rspb.2008.0284
  20. de Vienne DM, 2009, J EVOLUTION BIOL, V22, P2532, DOI 10.1111/j.1420-9101.2009.01878.x
  21. Ledo RMD, 2017, J BIOGEOGR, V44, P2551, DOI 10.1111/jbi.13049
  22. Dobson A, 2008, P NATL ACAD SCI USA, V105, P11482, DOI 10.1073/pnas.0803232105
  23. Donoghue MJ, 2014, ANNU REV ECOL EVOL S, V45, P547, DOI 10.1146/annurev-ecolsys-120213-091905
  24. Drummond AJ, 2006, PLOS BIOL, V4, P699, DOI 10.1371/journal.pbio.0040088
  25. Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075
  26. Duchene DA, 2015, GLOBAL ECOL BIOGEOGR, V24, P1261, DOI 10.1111/geb.12370
  27. Ellis VA, 2019, PARASITOLOGY, V146, P213, DOI 10.1017/S0031182018001130
  28. Ellisa VA, 2015, P NATL ACAD SCI USA, V112, P11294, DOI 10.1073/pnas.1515309112
  29. Fecchio A, 2018, ECOGRAPHY, V41, P505, DOI 10.1111/ecog.03058
  30. Fecchio A, 2019, ECOL LETT, V22, P547, DOI 10.1111/ele.13215
  31. Fecchio A, 2018, OIKOS, V127, P1233, DOI 10.1111/oik.05115
  32. Fecchio A, 2017, PARASITOLOGY, V144, P984, DOI [10.1017/S0031182017000208, 10.1017/s0031182017000208]
  33. Foley DH, 2007, J MED ENTOMOL, V44, P554, DOI 10.1603/0022-2585(2007)44[554:IIGMBF]2.0.CO;2
  34. Gager AB, 2008, MOL ECOL, V17, P2552, DOI 10.1111/j.1365-294X.2008.03764.x
  35. Galen SC, 2018, ROY SOC OPEN SCI, V5, DOI 10.1098/rsos.171780
  36. Guindon S, 2003, SYST BIOL, V52, P696, DOI 10.1080/10635150390235520
  37. HECK KL, 1975, ECOLOGY, V56, P1459, DOI 10.2307/1934716
  38. Hellgren O, 2004, J PARASITOL, V90, P797, DOI 10.1645/GE-184R1
  39. Hillebrand H, 2004, AM NAT, V163, P192, DOI 10.1086/381004
  40. HURLBERT SH, 1971, ECOLOGY, V52, P577, DOI 10.2307/1934145
  41. Ishtiaq F, 2008, MOL ECOL, V17, P4545, DOI 10.1111/j.1365-294X.2008.03935.x
  42. Ishtiaq F, 2010, J BIOGEOGR, V37, P120, DOI 10.1111/j.1365-2699.2009.02189.x
  43. Kamiya T, 2014, ECOGRAPHY, V37, P689, DOI 10.1111/j.1600-0587.2013.00571.x
  44. Kamiya T, 2014, BIOL REV, V89, P123, DOI 10.1111/brv.12046
  45. Krasnov BR, 2019, ECOGRAPHY, V42, P1000, DOI 10.1111/ecog.04224
  46. Krasnov BR, 2005, J BIOGEOGR, V32, P633, DOI 10.1111/j.1365-2699.2004.01206.x
  47. Kuris AM, 2008, NATURE, V454, P515, DOI 10.1038/nature06970
  48. Legendre P., 1998, NUMERICAL ECOLOGY
  49. Martinsen ES, 2008, MOL PHYLOGENET EVOL, V47, P261, DOI 10.1016/j.ympev.2007.11.012
  50. Medeiros MCI, 2015, PARASITOLOGY, V142, P1612, DOI 10.1017/S0031182015001183
  51. Medeiros MCI, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2947
  52. Merino S, 2008, AUSTRAL ECOL, V33, P329, DOI 10.1111/j.1442-9993.2008.01820.x
  53. Nekola JC, 1999, J BIOGEOGR, V26, P867, DOI 10.1046/j.1365-2699.1999.00305.x
  54. Njabo KY, 2011, MOL ECOL, V20, P1049, DOI 10.1111/j.1365-294X.2010.04904.x
  55. Nunn CL, 2005, DIVERS DISTRIB, V11, P249, DOI 10.1111/j.1366-9516.2005.00160.x
  56. Olson DM, 2001, BIOSCIENCE, V51, P933, DOI 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
  57. Pacheco MA, 2018, MOL BIOL EVOL, V35, P383, DOI 10.1093/molbev/msx285
  58. PIANKA ER, 1966, AM NAT, V100, P33, DOI 10.1086/282398
  59. POULIN R, 1995, ECOL MONOGR, V65, P283, DOI 10.2307/2937061
  60. Poulin R, 2003, J BIOGEOGR, V30, P1609, DOI 10.1046/j.1365-2699.2003.00949.x
  61. Poulin R., 2007, EVOLUTIONARY ECOLOGY
  62. Poulin R, 2011, TRENDS PARASITOL, V27, P355, DOI 10.1016/j.pt.2011.05.003
  63. Ricklefs RE, 2014, P NATL ACAD SCI USA, V111, P14816, DOI 10.1073/pnas.1416356111
  64. Ricklefs RE, 2010, PHILOS T R SOC B, V365, P1139, DOI 10.1098/rstb.2009.0279
  65. Rohde K, 1998, INT J PARASITOL, V28, P461, DOI 10.1016/S0020-7519(97)00209-9
  66. ROHDE K, 1992, OIKOS, V65, P514, DOI 10.2307/3545569
  67. Rohde K, 2002, ADV MAR BIOL, V43, P1
  68. SIMBERLOFF D, 1972, AM NAT, V106, P414, DOI 10.1086/282781
  69. Soininen J, 2007, ECOGRAPHY, V30, P3, DOI 10.1111/j.2006.0906-7590.04817.x
  70. Svensson-Coelho M, 2014, AM NAT, V184, P624, DOI 10.1086/678126
  71. Svensson-Coelho M, 2011, J ANIM ECOL, V80, P938, DOI 10.1111/j.1365-2656.2011.01837.x
  72. Valkiunas G., 2005, AVIAN MALARIA PARASI
  73. Vinarski MV, 2007, J BIOGEOGR, V34, P1691, DOI 10.1111/j.1365-2699.2007.01735.x
  74. Yu Y, 2015, MOL PHYLOGENET EVOL, V87, P46, DOI 10.1016/j.ympev.2015.03.008