Contribution of Epithelial Cells to Defense Mechanisms in the Human Vagina

Carregando...
Imagem de Miniatura
Citações na Scopus
16
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Citação
CURRENT INFECTIOUS DISEASE REPORTS, v.21, n.9, article ID 30, 6p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Purpose of ReviewThe vaginal milieu in women differs from that of other mammals, including non-human primates, in composition of secretions, the endogenous microbiota, and level of acidity. These changes apparently reflect evolutionary variations that maximized productive responses to a uniquely human vaginal environment. This review will highlight recent findings on properties of human vaginal epithelial cells that contribute to maintenance of a healthy vaginal environment.Recent FindingsVaginal epithelial cells are responsive to the composition of the vaginal microbiome even in women who are in apparently good health and do not exhibit any adverse physical symptoms. This is especially important during pregnancy when immune defenses are modified and an effective epithelial cell-derived anti-microbial activity is essential to prevent the migration to the uterus of bacteria potentially harmful to pregnancy progression. When Lactobacillus crispatus numerically predominates in the vagina, epithelial cell activity is low. Conversely, predominance of Lactobacillus iners, Gardnerella vaginalis, or other non-Lactobacilli evokes production and release of a large variety of compounds to minimize the potentially negative consequences of an altered microbiome. The extent of autophagy in vaginal epithelial cells, a basic process that functions to maintain intracellular homeostasis and engulf microbial invaders, is also sensitive to the external microbial environment Vaginal epithelial cells bind and release norepinephrine and upregulate their anti-microbial activity in response to external stress.SummaryVaginal epithelial cells in women are responsive to local conditions that are unique to humans and, thereby, contribute to maintenance of a healthy milieu.
Palavras-chave
Autophagy, Stress, Vaginal epithelial cells, Vaginal microbiome
Referências
  1. Alakomi H., 2005, APPL ENVIRON MICROB, V66, P2000, DOI 10.1128/AEM.66.5.2001-2005.2000
  2. Aldunate M, 2015, FRONT PHYSIOL, V6, DOI 10.3389/fphys.2015.00164
  3. Amabebe E, 2018, FRONT ENDOCRINOL, V9, DOI 10.3389/fendo.2018.00568
  4. Anderson DJ, 2014, AM J REPROD IMMUNOL, V71, P618, DOI 10.1111/aji.12230
  5. Asea A, 2005, EXERC IMMUNOL REV, V11, P34
  6. Beghini J, 2015, REPROD SCI, V22, P964, DOI 10.1177/1933719115570914
  7. Brosnahan AJ, 2013, J NEUROIMMUNOL, V259, P8, DOI 10.1016/j.jneuroim.2013.03.005
  8. Bulla R, 2010, MOL IMMUNOL, V48, P281, DOI 10.1016/j.molimm.2010.07.016
  9. Callahan BJ, 2017, P NATL ACAD SCI USA, V114, P9966, DOI 10.1073/pnas.1705899114
  10. Cole AM, 2006, CURR TOP MICROBIOL, V306, P199
  11. Ramos BRD, 2016, CELL STRESS CHAPERON, V21, P755, DOI 10.1007/s12192-016-0715-3
  12. Dokladny K, 2015, AUTOPHAGY, V11, P200, DOI 10.1080/15548627.2015.1009776
  13. Dokladny K, 2013, J BIOL CHEM, V288, P14959, DOI 10.1074/jbc.M113.462408
  14. Draper DL, 2000, AM J OBSTET GYNECOL, V183, P1243, DOI 10.1067/mob.2000.107383
  15. Fazeli A, 2005, HUM REPROD, V20, P1372, DOI 10.1093/humrep/deh775
  16. Fichorova RN, 1999, BIOL REPROD, V60, P508, DOI 10.1095/biolreprod60.2.508
  17. Imbert M, 1998, CURR MICROBIOL, V37, P64, DOI 10.1007/s002849900339
  18. Jarosik GP, 1998, INFECT IMMUN, V66, P5041
  19. Jasarevic E, 2015, ENDOCRINOLOGY, V156, P3265, DOI 10.1210/en.2015-1177
  20. Kanninen TT, 2016, J MATERN-FETAL NEO M, V29, P159, DOI 10.3109/14767058.2014.991916
  21. Kelly RDW, 2013, BIOCHEM SOC T, V41, P741, DOI 10.1042/BST20130010
  22. Kindinger LM, 2017, MICROBIOME, V5, DOI 10.1186/s40168-016-0223-9
  23. Kostakis ID, 2010, EUR J OBSTET GYN R B, V151, P3, DOI 10.1016/j.ejogrb.2010.03.006
  24. Lee J, 2017, PROBIOTICS ANTIMICRO, V9, P406, DOI 10.1007/s12602-017-9286-6
  25. Leizer J, 2018, REPROD SCI, V25, P854, DOI 10.1177/1933719117698583
  26. LINDQUIST S, 1988, ANNU REV GENET, V22, P631, DOI 10.1146/annurev.ge.22.120188.003215
  27. Lyte M, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0191037
  28. Nasioudis D, 2017, J REPROD IMMUNOL, V123, P35, DOI 10.1016/j.jri.2017.08.009
  29. Nasioudis D, 2015, REPROD SCI, V22, P1393, DOI 10.1177/1933719115581000
  30. Nasioudis D, 2015, MED MICROBIOL IMMUN, V204, P471, DOI 10.1007/s00430-015-0394-1
  31. O'Hanlon DE, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080074
  32. O'Hanlon DE, 2011, BMC INFECT DIS, V11, DOI 10.1186/1471-2334-11-200
  33. Patton DL, 2000, AM J OBSTET GYNECOL, V183, P967, DOI 10.1067/mob.2000.108857
  34. Pivarcsi A, 2005, MICROBES INFECT, V7, P1117, DOI 10.1016/j.micinf.2005.03.016
  35. Powell JD, 2005, IMMUNOL RES, V31, P207, DOI 10.1385/IR:31:3:207
  36. Ravel J, 2011, P NATL ACAD SCI USA, V108, P4680, DOI 10.1073/pnas.1002611107
  37. Rein MF, 1996, SEX TRANSM DIS, V23, P517, DOI 10.1097/00007435-199611000-00014
  38. Scholl J, 2016, AM J OBSTET GYNECOL, V214, DOI 10.1016/j.ajog.2015.12.053
  39. Shroff A, 2018, AM J REPROD IMMUNOL, V80, DOI 10.1111/aji.13056
  40. Shroff A, 2017, AM J REPROD IMMUNOL, V77, DOI 10.1111/aji.12639
  41. Spear GT, 2014, J INFECT DIS, V210, P1019, DOI 10.1093/infdis/jiu231
  42. Stumpf RM, 2013, AM J PHYS ANTHROPOL, V152, P119, DOI 10.1002/ajpa.22395
  43. Vaneechoutte M, 2017, RES MICROBIOL, V168, P826, DOI 10.1016/j.resmic.2017.09.003
  44. Wang CW, 2003, MOL MED, V9, P65, DOI 10.1007/BF03402040
  45. Wilson MC, 2005, J BIOL CHEM, V280, P27213, DOI 10.1074/jbc.M411950200
  46. Witkin SS, 2017, BJOG-INT J OBSTET GY, V124, P606, DOI 10.1111/1471-0528.14390
  47. Witkin SS, 2015, BJOG-INT J OBSTET GY, V122, P213, DOI 10.1111/1471-0528.13115
  48. Witkin SS, 2019, MINERVA GINECOL, V71, P171, DOI 10.23736/S0026-4784.18.04322-8
  49. Witkin SS, 2013, MBIO, V4, DOI 10.1128/mBio.00460-13
  50. Witkin SS, 2012, SCI TRANSL MED, V4, DOI 10.1126/scitranslmed.3003944