Population structuring of the invasive mosquito Aedes albopictus (Diptera: Culicidae) on a microgeographic scale

Carregando...
Imagem de Miniatura
Citações na Scopus
14
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
MULTINI, Laura Cristina
MARRELLI, Mauro Toledo
WILKE, Andre Barretto Bruno
Citação
PLOS ONE, v.14, n.8, article ID e0220773, 15p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aedes albopictus is an invasive mosquito species that has spread globally and can transmit several arboviruses, including dengue, chikungunya and yellow fever. The species was first reported in Brazil in 1986 and since then has been found in 24 of the 27 Brazilian states, often in peri-urban environments close to highly urbanized areas. To date, population genetics of this important mosquito in areas in the city of Sao Paulo has not been investigated. In this study, we used 12 microsatellite loci to investigate the microgeographic population genetics of Ae. albopictus, which is present throughout the city of Sao Paulo. All the analyses revealed structuring of the populations studied, divided into two groups with restricted gene flow between them and without evidence of isolation by distance. We propose two hypotheses to explain the results: (i) low dispersal capability-limited gene flow between populations is due to the low dispersal capability inherent to Ae. albopictus; and (ii) multiple introductions-the structure identified here results from multiple introductions, which led to different dispersal patterns within the city and more genetic heterogeneity. The ability of Ae. albopictus to invade new areas and expand may explain why these mosquito populations appear to be well established and thriving in the city of Sao Paulo.
Palavras-chave
Referências
  1. Aguirre-Obando OA, 2017, PARASITE VECTOR, V10, DOI 10.1186/s13071-017-2089-5
  2. Amraoui F, 2016, EUROSURVEILLANCE, V21, P15, DOI 10.2807/1560-7917.ES.2016.21.39.30361
  3. Ayllon T, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0195014
  4. Beebe NW, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002361
  5. Benedict MQ, 2007, VECTOR-BORNE ZOONOT, V7, P76, DOI 10.1089/vbz.2006.0562
  6. Wilke ABB, 2017, J MED ENTOMOL, V54, P1582, DOI 10.1093/jme/tjx149
  7. Wilke ABB, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0185150
  8. Buhaug H, 2013, GLOBAL ENVIRON CHANG, V23, P1, DOI 10.1016/j.gloenvcha.2012.10.016
  9. Caputo B., 2012, PLOS NEGLECT TROP D, V6, P4
  10. Carlsson J, 2008, J HERED, V99, P616, DOI 10.1093/jhered/esn048
  11. Ceretti W, 2015, J AM MOSQUITO CONTR, V31, P172, DOI 10.2987/14-6457R
  12. Chapuis MP, 2007, MOL BIOL EVOL, V24, P621, DOI 10.1093/molbev/msl191
  13. Chouin-Carneiro T, 2016, PLOS NEGLECT TROP D, V10, DOI 10.1371/journal.pntd.0004543
  14. Conn JE, 2006, AM J TROP MED HYG, V74, P798, DOI 10.4269/ajtmh.2006.74.798
  15. CONSOLI R. G. B., 1994, PRINCIPAIS MOSQUITOS
  16. de Oliveira RL, 2003, AM J TROP MED HYG, V69, P105, DOI 10.4269/ajtmh.2003.69.105
  17. Delatte H, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002111
  18. Dick OB, 2012, AM J TROP MED HYG, V87, P584, DOI 10.4269/ajtmh.2012.11-0770
  19. Dray S, 2007, J STAT SOFTW, V22, P1
  20. Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x
  21. Excoffier L, 2005, EVOL BIOINFORM, V1, P47
  22. FORATTINI OP, 1986, REV SAUDE PUBL, V20, P244, DOI 10.1590/S0034-89101986000300009
  23. Forattini OP, 2002, CULICIDOLOGIA MED, V2
  24. Gloria-Soria A, 2016, MOL ECOL, V25, P5377, DOI 10.1111/mec.13866
  25. GOMES AD, 1985, REV SAUDE PUBL, V19, P190
  26. Goubert C, 2016, HEREDITY, V117, P125, DOI 10.1038/hdy.2016.35
  27. Hill MP, 2014, AUSTRAL ECOL, V39, P469, DOI 10.1111/aec.12105
  28. Johnson MTJ, 2017, SCIENCE, V358, DOI 10.1126/science.aam8327
  29. Jombart T, 2008, BIOINFORMATICS, V24, P1403, DOI 10.1093/bioinformatics/btn129
  30. Kalinowski ST, 2005, MOL ECOL NOTES, V5, P187, DOI 10.1111/j.1471-8286.2004.00845.x
  31. Kamgang Basile, 2018, Wellcome Open Res, V3, P79, DOI 10.12688/wellcomeopenres.14659.2
  32. Kamgang B, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020257
  33. Keenan K, 2013, METHODS ECOL EVOL, V4, P782, DOI 10.1111/2041-210X.12067
  34. Kivela M, 2015, MOL ECOL RESOUR, V15, P117, DOI 10.1111/1755-0998.12290
  35. Knop E, 2016, GLOBAL CHANGE BIOL, V22, P228, DOI 10.1111/gcb.13091
  36. Kotsakiozi P, 2017, ECOL EVOL, V7, P10143, DOI 10.1002/ece3.3514
  37. Kraemer MUG, 2015, SCI DATA, V2, DOI 10.1038/sdata.2015.35
  38. Lambrechts L, 2010, PLOS NEGLECT TROP D, V4, DOI 10.1371/journal.pntd.0000646
  39. Leta S, 2018, INT J INFECT DIS, V67, P25, DOI 10.1016/j.ijid.2017.11.026
  40. Li YJ, 2014, PLOS NEGLECT TROP D, V8, DOI 10.1371/journal.pntd.0003301
  41. Louise C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0137851
  42. Lourenco AF, 2017, ESTUDOS, V44, P72
  43. Maia RT, 2009, GENET MOL RES, V8, P998, DOI 10.4238/vol8-3gmr624
  44. Manni M, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0005332
  45. Manni M, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-0794-5
  46. Maynard AJ, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0005546
  47. McKinney ML, 2006, BIOL CONSERV, V127, P247, DOI 10.1016/j.biocon.2005.09.005
  48. Medeiros-Sousa AR, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-18208-x
  49. Medeiros-Sousa AR, 2013, J AM MOSQUITO CONTR, V29, P275, DOI 10.2987/12-6304R.1
  50. Meirmans PG, 2011, MOL ECOL RESOUR, V11, P5, DOI 10.1111/j.1755-0998.2010.02927.x
  51. Pancetti FGM, 2015, REV SOC BRAS MED TRO, V48, P87, DOI 10.1590/0037-8682-0155-2014
  52. Monteiro FA, 2014, PLOS NEGLECT TROP D, V8, DOI 10.1371/journal.pntd.0003167
  53. Multini LC, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162328
  54. NASCI RS, 1981, MOSQ NEWS, V41, P808
  55. Pages F, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004691
  56. Paupy C, 2001, HEREDITY, V87, P273, DOI 10.1046/j.1365-2540.2001.00866.x
  57. Camara DCP, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0157120
  58. Pritchard JK, 2000, GENETICS, V155, P945
  59. R Core Team, 2017, LANG ENV STAT COMP, P1
  60. Reiter P, 1998, J AM MOSQUITO CONTR, V14, P83
  61. Rezza G, 2007, LANCET, V370, P1840, DOI 10.1016/S0140-6736(07)61779-6
  62. Rissler LJ, 2016, P NATL ACAD SCI USA, V113, P8079, DOI 10.1073/pnas.1601073113
  63. Roche B, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0125600
  64. Rousset F, 2008, MOL ECOL RESOUR, V8, P103, DOI 10.1111/j.1471-8286.2007.01931.x
  65. Schmidt TL, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0006009
  66. SERUFO JC, 1993, MEM I OSWALDO CRUZ, V88, P503, DOI 10.1590/S0074-02761993000300025
  67. Sherpa S, 2018, INFECT GENET EVOL, V58, P145, DOI 10.1016/j.meegid.2017.12.018
  68. Martins WFS, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0005917
  69. Smartt CT, 2017, J MED ENTOMOL, V54, P1085, DOI 10.1093/jme/tjx058
  70. United Nations Department of Economic and Social Affairs Population Division, 2015, WORLD URB PROSP 2014
  71. Vazeille M, 2001, AM J TROP MED HYG, V65, P491, DOI 10.4269/ajtmh.2001.65.491
  72. Vontas J, 2012, PESTIC BIOCHEM PHYS, V104, P126, DOI 10.1016/j.pestbp.2012.05.008
  73. Wilke ABB, 2018, TRENDS PARASITOL, V34, P1, DOI [10.1016/j.pt.2017.11.001, DOI 10.1016/J.PT.2017.11.001]
  74. Wilke ABB, 2018, INFECT GENET EVOL, V65, P333, DOI 10.1016/j.meegid.2018.08.017
  75. World Health Organization-WHO, 2018, YELL FEV BRAZ
  76. Zielke DE, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0099093