Performance of a Multiplex Nested Polymerase Chain Reaction in Detecting 7 Pathogens Containing DNA in Their Genomes Associated With Congenital Infections

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
COLL AMER PATHOLOGISTS
Citação
ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, v.144, n.1, p.99-106, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Context.-Infections are the leading cause of perinatal and infant mortality in low-income and low-resource countries, which have a higher prevalence of infections. Definitive diagnosis of congenital and perinatal infections is largely dependent upon the results of laboratory tests. Objective.-To develop a multiplex nested polymerase chain reaction (PCR) technique for the simultaneous detection of 7 pathogens containing DNA in their genomes in suspected cases of congenital infection. Design.-Eligible participants were pregnant women with positive immunoglobulin M antibodies raised to one of the pathogens in the prenatal serologic screening, associated or not with fetal ultrasound abnormalities or positive fetal serology. Neonates whose mothers did not attend prenatal care were included when they presented with symptomatology and laboratory parameters suggestive of infection. The detection rate of the multiplex nested PCR was compared with maternal, fetal, and neonatal serology, as well as placental immunohistochemistry and noncommercial amplifications. Results.-Of 161 suspected cases, the multiplex nested PCR detected 60 (37.3%), whereas the tests available in hospital laboratories detected 13 of 60 (21.7%) of the cases detected by the multiplex nested PCR, demonstrating a 4.6 times higher detection rate for the multiplex nested PCR (Fisher exact test, P < .001). Positive amplifications were to Toxoplasma gondii (32 cases), cytomegalovirus (14 cases), parvovirus B19 (5 cases), and adenovirus (5 cases). In 4 cases, 2 pathogens were simultaneously detected. All types of biological matrices were suitable for amplification. Sequencing of multiplex nested PCR products confirmed the molecular findings. Conclusions.-The multiplex nested PCR significantly increased the number of diagnosed congenital infections. Given the scarcity of DNA recovered from amniotic fluid and some neonatal samples, this multiplex nested PCR allows the simultaneous detection of 7 pathogens associated with congenital infections in a reliable, faster, cost-effective, and more sensitive way.
Palavras-chave
Referências
  1. Aslanzadeh J, 2004, ANN CLIN LAB SCI, V34, P389
  2. Bailao Luiz Antonio, 2005, Ultrasound Q, V21, P295, DOI 10.1097/01.ruq.0000187025.61943.ff
  3. Baschat AA, 2003, AM J OBSTET GYNECOL, V189, P758, DOI 10.1067/S0002-9378(03)00720-8
  4. Buehler J, 2016, PLOS PATHOG, V12, DOI 10.1371/journal.ppat.1005655
  5. Burd EM, 2010, CLIN MICROBIOL REV, V23, P550, DOI 10.1128/CMR.00074-09
  6. BURG JL, 1989, J CLIN MICROBIOL, V27, P1787, DOI 10.1128/JCM.27.8.1787-1792.1989
  7. Camargo PR, 2011, INT J CARDIOL, V148, P204, DOI 10.1016/j.ijcard.2009.11.002
  8. Coyne CB, 2016, NAT REV MICROBIOL, V14, P707, DOI 10.1038/nrmicro.2016.125
  9. Crino JP, 2018, CLIN OBSTET GYNECOL, V61, P106, DOI 10.1097/GRF.0000000000000342
  10. Degani S, 2006, OBSTET GYNECOL SURV, V61, P329, DOI 10.1097/01.ogx.0000216518.85796.88
  11. DEMMLER GJ, 1988, J INFECT DIS, V158, P1177, DOI 10.1093/infdis/158.6.1177
  12. DONNER C, 1994, PRENATAL DIAG, V14, P1055, DOI 10.1002/pd.1970141108
  13. DROSE JA, 1991, RADIOLOGY, V178, P369, DOI 10.1148/radiology.178.2.1846239
  14. Goodrum F, 2016, ANNU REV VIROL, V3, P333, DOI 10.1146/annurev-virology-110615-042422
  15. Kennedy PGE, 2015, J GEN VIROL, V96, P1581, DOI 10.1099/vir.0.000128
  16. KIMURA H, 1991, J INFECT DIS, V164, P289, DOI 10.1093/infdis/164.2.289
  17. Kralik P, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.00108
  18. Lansky S, 2014, CAD SAUDE PUBLICA, V30, DOI 10.1590/0102-311X00133213
  19. Lawn JE, 2006, INT J EPIDEMIOL, V35, P706, DOI 10.1093/ije/dyl043
  20. Lazar M, 2016, EBIOMEDICINE, V3, P86, DOI 10.1016/j.ebiom.2015.11.050
  21. Madrid L, 2016, EXPERT REV ANTI-INFE, V14, P845, DOI 10.1080/14787210.2016.1215913
  22. Maldonado YA, 2017, PEDIATRICS, V139, DOI 10.1542/peds.2016-3860
  23. MANROE BL, 1979, J PEDIATR-US, V95, P89, DOI 10.1016/S0022-3476(79)80096-7
  24. Markus A, 2015, PLOS PATHOG, V11, DOI 10.1371/journal.ppat.1004885
  25. Mathews T J, 2007, Natl Vital Stat Rep, V55, P1
  26. McIver CJ, 2005, J CLIN MICROBIOL, V43, P5102, DOI 10.1128/JCM.43.10.5102-5110.2005
  27. Miller JL, 2009, J PERINAT MED, V37, P140, DOI 10.1515/JPM.2009.027
  28. da Silva AAM, 2014, CAD SAUDE PUBLICA, V30, DOI 10.1590/0102-311X00129613
  29. NAKAJIMAIIJIMA S, 1985, P NATL ACAD SCI USA, V82, P6133, DOI 10.1073/pnas.82.18.6133
  30. Neu N, 2015, CLIN PERINATOL, V42, P77, DOI 10.1016/j.clp.2014.11.001
  31. Nikolayevskyy V, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0149435
  32. Okay TS, 2009, CLINICS, V64, P171, DOI 10.1590/S1807-59322009000300004
  33. Ouedraogo AR, 2016, PAN AFR MED J, V24, DOI 10.11604/pamj.2016.24.223.9406
  34. Oyer CE, 2000, HUM PATHOL, V31, P1433, DOI 10.1053/hupa.2000.20408
  35. Pan American Health Organization, 2006, NEON HLTH CONT MAT N
  36. Phan AT, 2016, BIOCHEM BIOPH RES CO, V474, P71, DOI 10.1016/j.bbrc.2016.04.070
  37. Piedade D, 2016, VIRUSES-BASEL, V8, DOI 10.3390/v8060156
  38. Pomares C, 2016, J CLIN MICROBIOL, V54, P2448, DOI 10.1128/JCM.00487-16
  39. PUCHHAMMERSTOCKL E, 1991, J CLIN MICROBIOL, V29, P1513
  40. Puerari Diane, 2015, Rev. paul. pediatr., V33, P136, DOI 10.1016/j.rpped.2014.09.004
  41. Rabelo K, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.01704
  42. Ranucci-Weiss D, 1998, PRENATAL DIAG, V18, P182, DOI 10.1002/(SICI)1097-0223(199802)18:2<182::AID-PD225>3.0.CO;2-E
  43. Rawlinson WD, 2017, LANCET INFECT DIS, V17, pE177, DOI 10.1016/S1473-3099(17)30143-3
  44. Silasi M, 2015, AM J REPROD IMMUNOL, V73, P199, DOI 10.1111/aji.12355
  45. Smieja M, 2001, J CLIN MICROBIOL, V39, P1796, DOI 10.1128/JCM.39.5.1796-1801.2001
  46. Tabata T, 2016, AM J PATHOL, V186, P2970, DOI 10.1016/j.ajpath.2016.07.016
  47. Teixeira LE, 2013, REV SOC BRAS MED TRO, V46, P584, DOI 10.1590/0037-8682-0095-2013
  48. Thomas F, 2010, PHARMACOGENOMICS, V11, P1751, DOI [10.2217/pgs.10.170, 10.2217/PGS.10.170]
  49. TOROK TJ, 1992, CLIN INFECT DIS, V14, P149, DOI 10.1093/clinids/14.1.149
  50. UNICEF. United Nations Children's Fund, 2009, STAT WORLDS CHILDR 2
  51. Villard O, 2016, J CLIN MICROBIOL, V54, P3034, DOI 10.1128/JCM.01193-16