The Optimal Age of Vaccination Against Dengue with an Age-Dependent Biting Rate with Application to Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Autores
Citação
BULLETIN OF MATHEMATICAL BIOLOGY, v.82, n.1, article ID UNSP 12, 32p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
In this paper we introduce a single serotype transmission model, including an age-dependent mosquito biting rate, to find the optimal vaccination age against dengue in Brazil with Dengvaxia. The optimal vaccination age and minimal lifetime expected risk of hospitalisation are found by adapting a method due to Hethcote (Math Biosci 89:29-52). Any number and combination of the four dengue serotypes DENv1-4 is considered. Successful vaccination against a serotype corresponds to a silent infection. The effects of antibody-dependent enhancement (ADE) and permanent cross-immunity after two heterologous infections are studied. ADE is assumed to imply risk-free primary infections, while permanent cross-immunity implies risk-free tertiary and quaternary infections. Data from trials of Dengvaxia indicate vaccine efficacy to be age and serostatus dependent and vaccination of seronegative individuals to induce an increased risk of hospitalisation. Some of the scenarios are therefore reconsidered taking these findings into account. The optimal vaccination age is compared to that achievable under the current age restriction of the vaccine. If vaccination is not considered to induce risk, optimal vaccination ages are very low. The assumption of ADE generally leads to a higher optimal vaccination age in this case. For a single serotype vaccination is not recommended in the case of ADE. Permanent cross-immunity results in a slightly lower optimal vaccination age. If vaccination induces a risk, the optimal vaccination ages are much higher, particularly for permanent cross-immunity. ADE has no effect on the optimal vaccination age when permanent cross-immunity is considered; otherwise, it leads to a slight increase in optimal vaccination age.
Palavras-chave
Dengue, Vaccination, Optimal vaccination age, Age-structured model, Biting rate, Hospitalisation
Referências
  1. Aguiar M, 2018, CLIN INFECT DIS, V66, P641, DOI 10.1093/cid/cix882
  2. Aguiar M, 2016, PLOS NEGLECT TROP D, V10, DOI 10.1371/journal.pntd.0005179
  3. Aguiar M, 2016, LANCET INFECT DIS, V16, P882, DOI 10.1016/S1473-3099(16)30168-2
  4. Anderson KB, 2014, J INFECT DIS, V209, P360, DOI 10.1093/infdis/jit436
  5. ANDERSON RM, 1983, J HYG-CAMBRIDGE, V90, P259, DOI 10.1017/S002217240002893X
  6. Martinez-Vega RA, 2017, VACCINE, V35, P3910, DOI 10.1016/j.vaccine.2017.06.004
  7. Bhatt S, 2013, NATURE, V496, P504, DOI 10.1038/nature12060
  8. Billings L, 2008, MATH BIOSCI, V211, P265, DOI 10.1016/j.mbs.2007.08.004
  9. Burattini MN, 2016, CLINICS, V71, P455, DOI 10.6061/clinics/2016(08)08
  10. Capeding MR, 2014, LANCET, V384, P1358, DOI 10.1016/S0140-6736(14)61060-6
  11. Coudeville L, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051244
  12. Coutinho FAB, 2006, B MATH BIOL, V68, P2263, DOI 10.1007/s11538-006-9108-6
  13. DIEKMANN O, 1990, J MATH BIOL, V28, P365
  14. Durham DP, 2013, VACCINE, V31, P3957, DOI 10.1016/j.vaccine.2013.06.036
  15. Esteva L, 1998, MATH BIOSCI, V150, P131, DOI 10.1016/S0025-5564(98)10003-2
  16. Favier C, 2006, TROP MED INT HEALTH, V11, P332, DOI 10.1111/j.1365-3156.2006.01560.x
  17. Feng ZL, 1997, J MATH BIOL, V35, P523, DOI 10.1007/s002850050064
  18. Ferguson NM, 2016, SCIENCE, V353, P1033, DOI 10.1126/science.aaf9590
  19. Flasche S, 2016, COMP MODELLING DENGU
  20. Fredericks AC, 2014, ANN GLOB HEALTH, V80, P466, DOI 10.1016/j.aogh.2015.02.006
  21. Fried JR, 2010, PLOS NEGLECT TROP D, V4, DOI 10.1371/journal.pntd.0000617
  22. Garba SM, 2008, MATH BIOSCI, V215, P11, DOI 10.1016/j.mbs.2008.05.002
  23. Gibbons RV, 2007, AM J TROP MED HYG, V77, P910, DOI 10.4269/ajtmh.2007.77.910
  24. Gibbons RV, 2002, BRIT MED J, V324, P1563, DOI 10.1136/bmj.324.7353.1563
  25. Gubler Duane J, 2011, Trop Med Health, V39, P3, DOI 10.2149/tmh.2011-S05
  26. Hadinegoro SR, 2015, NEW ENGL J MED, V373, P1195, DOI 10.1056/NEJMoa1506223
  27. HALSTEAD SB, 1980, B WORLD HEALTH ORGAN, V58, P1
  28. Halstead SB, 2016, J INFECT DIS, V214, P1793, DOI 10.1093/infdis/jiw340
  29. Halstead SB, 2016, TRAVEL MED INFECT DI, V14, P378, DOI 10.1016/j.tmaid.2016.06.005
  30. Halstead SB, 2016, VACCINE, V34, P1643, DOI 10.1016/j.vaccine.2016.02.004
  31. Halstead SB, 2009, ANN NY ACAD SCI, V1171, pE48, DOI 10.1111/j.1749-6632.2009.05052.x
  32. HETHCOTE HW, 1988, MATH BIOSCI, V89, P29, DOI 10.1016/0025-5564(88)90111-3
  33. Jain A, 2010, FEMS IMMUNOL MED MIC, V59, P119, DOI 10.1111/j.1574-695X.2010.00670.x
  34. Knipl D, 2015, B MATH BIOL, V77, P2212, DOI 10.1007/s11538-015-0120-6
  35. Leong ASY, 2007, SEMIN DIAGN PATHOL, V24, P227, DOI 10.1053/j.semdp.2007.07.002
  36. Massad E, 2010, TROP MED INT HEALTH, V15, P120, DOI 10.1111/j.1365-3156.2009.02413.x
  37. Massad E, 2001, T ROY SOC TROP MED H, V95, P370, DOI 10.1016/S0035-9203(01)90184-1
  38. Massad E, 2015, COMMUNICATION
  39. Reiner RC, 2014, P NATL ACAD SCI USA, V111, pE2694, DOI 10.1073/pnas.1314933111
  40. SAGE/World Health Organization, 2016, BACKGR PAP DENG VACC
  41. Stephenson JR, 2005, B WORLD HEALTH ORGAN, V83, P308
  42. United States Central Intelligence Agency, 2016, BRAZ WORLD FACTB
  43. van Panhuis WG, 2011, AM J TROP MED HYG, V85, P355, DOI 10.4269/ajtmh.2011.11-0125
  44. World Health Organistion (WHO), 2012, GLOB STRAT DENG PREV
  45. World Health Organization, 2009, DENG GUID DIAGN TREA