The Vaginal Microbiome as a Tool to Predict rASRM Stage of Disease in Endometriosis: a Pilot Study

Carregando...
Imagem de Miniatura
Citações na Scopus
41
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER HEIDELBERG
Autores
PERROTTA, Allison R.
MARTINS, Carlo O.
GRIFFITH, Linda G.
ALM, Eric J.
Citação
REPRODUCTIVE SCIENCES, v.27, n.4, p.1064-1073, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Endometriosis remains a challenge to understand and to diagnose. This is an observational cross-sectional pilot study to characterize the gut and vaginal microbiome profiles among endometriosis patients and control subjects without the disease and to explore their potential use as a less-invasive diagnostic tool for endometriosis. Overall, 59 women were included, n = 35 with endometriosis and n = 24 controls. Rectal and vaginal samples were collected in two different periods of the menstrual cycle from all subjects. Gut and vaginal microbiomes from patients with different rASRM (revised American Society for Reproductive Medicine) endometriosis stages and controls were analyzed. Illumina sequencing libraries were constructed using a two-step 16S rRNA gene PCR amplicon approach. Correlations of 16S rRNA gene amplicon data with clinical metadata were conducted using a random forest-based machine-learning classification analysis. Distribution of vaginal CSTs (community state types) significantly differed between follicular and menstrual phases of the menstrual cycle (p = 0.021, Fisher's exact test). Vaginal and rectal microbiome profiles and their association to severity of endometriosis (according to rASRM stages) were evaluated. Classification models built with machine-learning methods on the microbiota composition during follicular and menstrual phases of the cycle were built, and it was possible to accurately predict rASRM stages 1-2 verses rASRM stages 3-4 endometriosis. The feature contributing the most to this prediction was an OTU (operational taxonomic unit) from the genus Anaerococcus. Gut and vaginal microbiomes of women with endometriosis have been investigated. Our findings suggest for the first time that vaginal microbiome may predict stage of disease when endometriosis is present.
Palavras-chave
Endometriosis, Pathogenesis, Microbiome, Vaginal microbiome, Diagnosis
Referências
  1. Abrao MS, 2007, HUM REPROD, V22, P3092, DOI 10.1093/humrep/dem187
  2. Anahtar MN, 2015, IMMUNITY, V42, P965, DOI 10.1016/j.immuni.2015.04.019
  3. Beste MT, 2014, SCI TRANSL MED, V6, p222ra16
  4. Borrelli GM, 2014, HUM REPROD, V29, P253, DOI 10.1093/humrep/det401
  5. Brooks J. Paul, 2017, Microbial Ecology in Health and Disease, V28, P1303265, DOI 10.1080/16512235.2017.1303265
  6. Burney RO, 2012, FERTIL STERIL, V98, P511, DOI 10.1016/j.fertnstert.2012.06.029
  7. Campos GB, 2018, FERTIL STERIL, V109, P549, DOI 10.1016/j.fertnstert.2017.11.009
  8. Chen C, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-00901-0
  9. Christodoulakos G, 2007, EUR J CONTRACEP REPR, V12, P194, DOI 10.1080/13625180701387266
  10. Clemente JC, 2018, BMJ-BRIT MED J, V360, DOI 10.1136/bmj.j5145
  11. David LA, 2014, GENOME BIOL, V15, DOI 10.1186/gb-2014-15-7-r89
  12. Dorien FO, 2018, BEST PRACT RES CL OB, V50, P72, DOI 10.1016/j.bpobgyn.2018.04.001
  13. Dunselman GAJ, 2014, HUM REPROD, V29, P400, DOI 10.1093/humrep/det457
  14. Eslami S, 2016, APMIS, V124, P697, DOI 10.1111/apm.12556
  15. Farage Miranda, 2006, Archives of Gynecology and Obstetrics, V273, P195, DOI 10.1007/s00404-005-0079-x
  16. Gajer P, 2012, SCI TRANSL MED, V4, DOI 10.1126/scitranslmed.3003605
  17. Kiely CJ, 2018, GUT MICROBES, V9, P477, DOI 10.1080/19490976.2018.1448742
  18. Kvaskoff M, 2015, HUM REPROD UPDATE, V21, P500, DOI 10.1093/humupd/dmv013
  19. Lagana AS, 2017, MED HYPOTHESES, V103, P10, DOI 10.1016/j.mehy.2017.03.032
  20. Laschke MW, 2016, AM J OBSTET GYNECOL, V215, DOI 10.1016/j.ajog.2016.02.036
  21. Maybin JA, 2015, HUM REPROD UPDATE, V21, P748, DOI 10.1093/humupd/dmv038
  22. Narayanan V, 2014, CANCER PREV RES, V7, P1108, DOI 10.1158/1940-6207.CAPR-14-0273
  23. Nisenblat V, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD012281
  24. Nunn Kenetta L., 2016, Yale Journal of Biology and Medicine, V89, P331
  25. Opazo MC, 2018, FRONT MICROBIOL, V9, DOI 10.3389/fmicb.2018.00432
  26. Papa E, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039242
  27. Peterson CT, 2015, CLIN EXP IMMUNOL, V179, P363, DOI 10.1111/cei.12474
  28. Podgaec S, 2007, HUM REPROD, V22, P1373, DOI 10.1093/humrep/del516
  29. Podgaec S, 2012, AM J REPROD IMMUNOL, V68, P301, DOI 10.1111/j.1600-0897.2012.01173.x
  30. Preheim SP, 2013, APPL ENVIRON MICROB, V79, P6593, DOI 10.1128/AEM.00342-13
  31. Quast C, 2012, NUCLEIC ACIDS RES, DOI 10.1093/NAR/GKS1219
  32. Quigley EMM, 2017, NAT REV GASTRO HEPAT, V14, P315, DOI 10.1038/nrgastro.2017.29
  33. Ravel J, 2011, P NATL ACAD SCI USA, V108, P4680, DOI 10.1073/pnas.1002611107
  34. Rogers GB, 2010, MOL DIAGN THER, V14, P343, DOI 10.2165/11587680-000000000-00000
  35. Romero R, 2014, MICROBIOME, V2, DOI 10.1186/2049-2618-2-4
  36. Santulli P, 2018, BEST PRACT RES CLIN, VS1521-6934, p[ii, 30028]
  37. Senturk LM, 1999, J REPROD IMMUNOL, V43, P67, DOI 10.1016/S0165-0378(98)00079-5
  38. Wang Q, 2007, APPL ENVIRON MICROB, V73, P5261, DOI 10.1128/AEM.00062-07
  39. Yuan M, 2018, HUM REPROD, V33, P607, DOI 10.1093/humrep/dex372
  40. Zhou X, 2010, FEMS IMMUNOL MED MIC, V58, P169, DOI 10.1111/j.1574-695X.2009.00618.x