Immune-pineal axis protects rat lungs exposed to polluted air

Carregando...
Imagem de Miniatura
Citações na Scopus
25
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
CARVALHO-SOUSA, Claudia Emanuele
PEREIRA, Eliana P.
KINKER, Gabriela S.
FERREIRA, Zulma S.
BARBOSA-NUNES, Fernanda P.
MARTINS, Joilson O.
REITER, Russel J.
FERNANDES, Pedro A.
Citação
JOURNAL OF PINEAL RESEARCH, v.68, n.3, article ID e12636, 13p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Environmental pollution in the form of particulate matter <2.5 mu m (PM2.5) is a major risk factor for diseases such as lung cancer, chronic respiratory infections, and major cardiovascular diseases. Our goal was to show that PM2.5 eliciting a proinflammatory response activates the immune-pineal axis, reducing the pineal synthesis and increasing the extrapineal synthesis of melatonin. Herein, we report that the exposure of rats to polluted air for 6 hours reduced nocturnal plasma melatonin levels and increased lung melatonin levels. Melatonin synthesis in the lung reduced lipid peroxidation and increased PM2.5 engulfment and cell viability by activating high-affinity melatonin receptors. Diesel exhaust particles (DEPs) promoted the synthesis of melatonin in a cultured cell line (RAW 264.7 cells) and rat alveolar macrophages via the expression of the gene encoding for AANAT through a mechanism dependent on activation of the NF kappa B pathway. Expression of the genes encoding AANAT, MT1, and MT2 was negatively correlated with cellular necroptosis, as disclosed by analysis of Gene Expression Omnibus (GEO) microarray data from the human alveolar macrophages of nonsmoking subjects. The enrichment score for antioxidant genes obtained from lung gene expression data (GTEx) was significantly correlated with the levels of AANAT and MT1 but not the MT2 melatonin receptor. Collectively, these data provide a systemic and mechanistic rationale for coordination of the pineal and extrapineal synthesis of melatonin by a standard damage-associated stimulus, which activates the immune-pineal axis and provides a new framework for understanding the effects of air pollution on lung diseases.
Palavras-chave
alveolar macrophages, diesel particle, immune-pineal axis, NF-kappa B, phagocytosis
Referências
  1. Banerjee D, 2005, IMMUNITY, V23, P445, DOI 10.1016/j.immuni.2005.09.012
  2. Barbosa EJM, 2000, EUR J PHARMACOL, V401, P59, DOI 10.1016/S0014-2999(00)00416-7
  3. Carvalho VSB, 2015, ENVIRON SCI POLICY, V47, P68, DOI 10.1016/j.envsci.2014.11.001
  4. Barrett T, 2013, NUCLEIC ACIDS RES, V41, pD991, DOI 10.1093/nar/gks1193
  5. Becker S, 2002, AM J RESP CELL MOL, V27, P611, DOI 10.1165/rcmb.4868
  6. Block ML, 2009, TRENDS NEUROSCI, V32, P506, DOI 10.1016/j.tins.2009.05.009
  7. Brook RD, 2010, CIRCULATION, V121, P2331, DOI 10.1161/CIR.0b013e3181dbece1
  8. Burnett RT, 2014, ENVIRON HEALTH PERSP, V122, P397, DOI 10.1289/ehp.1307049
  9. Carvalho-Sousa CE, 2011, FR ENDOCRINOL, V2, P1, DOI [10.3389/fendo.2011.00010, DOI 10.3389/FENDO.2011.00010]
  10. Chen F, 2018, ENVIRON POLLUT, V232, P329, DOI 10.1016/j.envpol.2017.08.072
  11. Cohen AJ, 2017, LANCET, V389, P1907, DOI [10.1016/S0140-6736(17)30505-6, 10.1016/s0140-6736(17)30505-6]
  12. Couto-Moraes R, 2009, ANN NY ACAD SCI, V1153, P193, DOI 10.1111/j.1749-6632.2008.03978.x
  13. Cruz-Machado SD, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040142
  14. Cruz-Machado SD, 2010, J PINEAL RES, V49, P183, DOI 10.1111/j.1600-079X.2010.00785.x
  15. Dallmann T, 2016, ENV RISKS DIESEL PAS, P1
  16. Demetriou CA, 2012, OCCUP ENVIRON MED, V69, P619, DOI 10.1136/oemed-2011-100566
  17. Dundar K, 2005, CLIN EXP PHARMACOL P, V32, P926, DOI 10.1111/j.1440-1681.2005.04286.x
  18. El-Sokkary GH, 1999, SHOCK, V12, P402, DOI 10.1097/00024382-199911000-00009
  19. Fernandes PACM, 2009, J NEUROENDOCRINOL, V21, P90, DOI 10.1111/j.1365-2826.2008.01817.x
  20. Fernandes PA, 2017, NEUROENDOCRINOLOGY, V104, P126, DOI 10.1159/000445189
  21. Ferreira ZS, 2005, J PINEAL RES, V38, P182, DOI 10.1111/j.1600-079X.2004.00191.x
  22. FERREIRA ZS, 1994, BRIT J PHARMACOL, V112, P107, DOI 10.1111/j.1476-5381.1994.tb13037.x
  23. Gerlofs-Nijland ME, 2010, PART FIBRE TOXICOL, V7, DOI 10.1186/1743-8977-7-12
  24. Hosseinzadeh A, 2018, EXPERT OPIN THER TAR, V22, P1049, DOI 10.1080/14728222.2018.1541318
  25. Hu YC, 2014, INFLAMM RES, V63, P109, DOI 10.1007/s00011-013-0677-1
  26. Jockers R, 2016, BRIT J PHARMACOL, V173, P2702, DOI 10.1111/bph.13536
  27. Kampfrath T, 2011, CIRC RES, V108, P716, DOI 10.1161/CIRCRESAHA.110.237560
  28. Kanehisa M, 2002, NUCLEIC ACIDS RES, V30, P42, DOI 10.1093/nar/30.1.42
  29. Konturek SJ, 2007, J PHYSIOL PHARMACOL, V58, P23
  30. Laranjeira-Silva MF, 2015, J PINEAL RES, V59, P478, DOI 10.1111/jpi.12279
  31. Lee FY, 2019, BIOMED PHARMACOTHER, V113, DOI 10.1016/j.biopha.2019.108737
  32. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  33. Lonsdale J, 2013, NAT GENET, V45, P580, DOI 10.1038/ng.2653
  34. Markus RP, 2007, NEUROIMMUNOMODULAT, V14, P126, DOI 10.1159/000110635
  35. Markus RP, 2018, BRIT J PHARMACOL, V175, P3239, DOI 10.1111/bph.14083
  36. Markus RP, 2013, INT J MOL SCI, V14, P10979, DOI 10.3390/ijms140610979
  37. Martins LD, 2010, AIR QUAL ATMOS HLTH, V3, P29, DOI 10.1007/s11869-009-0048-9
  38. Moller P, 2008, CANCER LETT, V266, P84, DOI 10.1016/j.canlet.2008.02.030
  39. Muxel SM, 2016, J PINEAL RES, V60, P394, DOI 10.1111/jpi.12321
  40. Muxel SM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052010
  41. Nemmar A, 2013, BIOMED RES INT, DOI 10.1155/2013/279371
  42. OHKAWA H, 1979, ANAL BIOCHEM, V95, P351, DOI 10.1016/0003-2697(79)90738-3
  43. Pires-Lapa MA, 2013, J PINEAL RES, V55, P240, DOI 10.1111/jpi.12066
  44. Rosen R, 2009, MOL VIS, V15, P1673
  45. Sarnico I, 2009, J NEUROCHEM, V108, P475, DOI 10.1111/j.1471-4159.2008.05783.x
  46. SIOUTAS C, 1995, ENVIRON HEALTH PERSP, V103, P172, DOI 10.2307/3432274
  47. Slominski AT, 2018, J INVEST DERMATOL, V138, P490, DOI 10.1016/j.jid.2017.10.025
  48. Subramanian A, 2005, P NATL ACAD SCI USA, V102, P15545, DOI 10.1073/pnas.0506580102
  49. Tamura EK, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013958
  50. Totedo MF, 2016, ALLERGOL IMMUNOPATH, V44, P439, DOI 10.1016/j.aller.2016.02.006
  51. van Berlo Damien, 2012, Exp Suppl, V101, P165, DOI 10.1007/978-3-7643-8340-4_7
  52. Xu YY, 2019, ENVIRON POLLUT, V247, P953, DOI 10.1016/j.envpol.2019.01.118
  53. Yanagi Y, 2012, CAD SAUDE PUBLICA, V28, P1737, DOI 10.1590/S0102-311X2012000900012
  54. Zhang HS, 2018, INT J MOL MED, V41, P3203, DOI 10.3892/ijmm.2018.3567
  55. Zhao C, 2013, INHAL TOXICOL, V25, P178, DOI 10.3109/08958378.2013.766079