An Adaptation of Pavlovian-to-Instrumental Transfer (PIT) Methodology to Examine the Energizing Effects of Reward-Predicting Cues on Behavior in Young Adults

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
FURUKAWA, Emi
HOEFLE, Sebastian
MOLL, Jorge
TRIPP, Gail
MATTOS, Paulo
Citação
FRONTIERS IN PSYCHOLOGY, v.11, article ID 195, 9p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
There is growing recognition that much of human behavior is governed by the presence of classically conditioned cues. The Pavlovian-to-Instrumental Transfer (PIT) paradigm offers a way to measure the effects of classically conditioned stimuli on behavior. In the current study, a novel behavioral task, an adaptation of the PIT framework, was developed for use in conjunction with an fMRI classical conditioning task. Twenty-four healthy young adults completed (1) instrumental training, (2) Pavlovian conditioning, and (3) a Transfer test. During instrumental training, participants learned to apply force to a handgrip to win money from slot machines pictured on a computer screen. During Pavlovian conditioning, slot machines appeared with one of two abstract symbols (cues), one symbol was predictive of monetary reward. During the Transfer test, participants again applied force to a handgrip to win money. This time, the slot machines were presented with the Pavlovian cues, but with the outcomes hidden. The results indicated increased effort on the instrumental task, i.e. higher response frequency and greater force, in the presence of the reward-predicting cue. Our findings add to the growing number of studies demonstrating PIT effects in humans. This new paradigm is effective in measuring the effects of a conditioned stimulus on behavioral activation.
Palavras-chave
Pavlovian conditioning, reward anticipation, conditioned stimuli, Pavlovian-to-instrumental transfer, fMRI, functional magnetic resonance imaging
Referências
  1. Alarcon D. E., 2019, J EXP CHILD PSYCHOL, V3
  2. Allman MJ, 2010, J EXP PSYCHOL-ANIM B, V36, P402, DOI 10.1037/a0017876
  3. Asci O, 2019, COGN AFFECT BEHAV NE, V19, P555, DOI 10.3758/s13415-019-00692-5
  4. Astur RS, 2015, BEHAV BRAIN RES, V291, P277, DOI 10.1016/j.bbr.2015.05.016
  5. Blechert J, 2016, PHYSIOL BEHAV, V158, P18, DOI 10.1016/j.physbeh.2016.02.028
  6. Bortolini T, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-15385-7
  7. Brasil H. H. A., 2003, DEV BRAZILIAN VERSIO
  8. Bray S, 2008, J NEUROSCI, V28, P5861, DOI 10.1523/JNEUROSCI.0897-08.2008
  9. Cartoni E, 2016, NEUROSCI BIOBEHAV R, V71, P829, DOI 10.1016/j.neubiorev.2016.09.020
  10. Chong TTJ, 2016, PROG BRAIN RES, V229, P71, DOI 10.1016/bs.pbr.2016.05.002
  11. Colagiuri B, 2015, APPETITE, V84, P79, DOI 10.1016/j.appet.2014.09.023
  12. Conzelmann A, 2016, J NEURAL TRANSM, V123, P971, DOI 10.1007/s00702-016-1512-y
  13. Corbit LH, 2011, J NEUROSCI, V31, P11786, DOI 10.1523/JNEUROSCI.2711-11.2011
  14. Corbit LH, 2005, J NEUROSCI, V25, P962, DOI 10.1523/JNEUROSCI.4507-04.2005
  15. Corbit LH, 2003, J EXP PSYCHOL ANIM B, V29, P99, DOI 10.1037/0097-7403.29.2.99
  16. Corbit LH, 2001, J NEUROSCI, V21, P3251, DOI 10.1523/JNEUROSCI.21-09-03251.2001
  17. Costa R. Q. M., 2019, PREPRINT, DOI [10.1101/601195, DOI 10.1101/601195]
  18. Del-Ben Cristina Marta, 2001, Revista Brasileira de Psiquiatria, V23, P156, DOI 10.1590/S1516-44462001000300008
  19. Freeman SM, 2015, NEUROPSYCHOLOGIA, V68, P218, DOI 10.1016/j.neuropsychologia.2015.01.016
  20. Freeman SM, 2014, CURR BIOL, V24, P212, DOI 10.1016/j.cub.2013.12.019
  21. Furukawa E, 2020, NEUROPHARMACOLOGY, V162, DOI 10.1016/j.neuropharm.2019.107833
  22. Furukawa E, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0089129
  23. Garbusow M, 2019, J CLIN MED, V8, DOI 10.3390/jcm8081188
  24. Garbusow M, 2016, ADDICT BIOL, V21, P719, DOI 10.1111/adb.12243
  25. Garbusow M, 2014, NEUROPSYCHOBIOLOGY, V70, P111, DOI 10.1159/000363507
  26. Garofalo S, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-43860-w
  27. Genauck A, 2019, ADDICT BIOL, DOI 10.1111/adb.12841
  28. Geurts DEM, 2013, J COGNITIVE NEUROSCI, V25, P1428, DOI 10.1162/jocn_a_00425
  29. Hall J, 2001, EUR J NEUROSCI, V13, P1984, DOI 10.1046/j.0953-816x.2001.01577.x
  30. Hardy L, 2017, PSYCHOPHARMACOLOGY, V234, P1977, DOI 10.1007/s00213-017-4605-x
  31. Hebart MN, 2015, PSYCHOPHARMACOLOGY, V232, P437, DOI 10.1007/s00213-014-3682-3
  32. Hogarth L, 2015, ADDICTION, V110, P174, DOI 10.1111/add.12756
  33. Hogarth L, 2012, J EXP PSYCHOL-ANIM B, V38, P266, DOI 10.1037/a0028914
  34. Holland PC, 2003, EUR J NEUROSCI, V17, P1680, DOI 10.1046/j.1460-9568.2003.02585.x
  35. Huys QJM, 2016, PSYCHOL MED, V46, P1027, DOI 10.1017/S0033291715002597
  36. Jeffs S, 2017, BEHAV BRAIN RES, V321, P214, DOI 10.1016/j.bbr.2016.12.022
  37. Klucken T, 2016, J SEX MED, V13, P627, DOI 10.1016/j.jsxm.2016.01.013
  38. Knutson B, 2000, NEUROIMAGE, V12, P20, DOI 10.1006/nimg.2000.0593
  39. Le Pelley ME, 2016, PSYCHOL BULL, V142, P1111, DOI 10.1037/bul0000064
  40. Le Pelley ME, 2015, J EXP PSYCHOL GEN, V144, P158, DOI 10.1037/xge0000037
  41. Leong YC, 2017, NEURON, V93, P451, DOI 10.1016/j.neuron.2016.12.040
  42. LEVEY A B, 1991, Integrative Physiological and Behavioral Science, V26, P26, DOI 10.1007/BF02690975
  43. Lovibond PF, 2013, PSYCHOL SCI, V24, P2030, DOI 10.1177/0956797613484043
  44. Lovibond PF, 2002, J EXP PSYCHOL ANIM B, V28, P3, DOI 10.1037//0097-7403.28.1.3
  45. Manglani HR, 2017, NICOTINE TOB RES, V19, P670, DOI 10.1093/ntr/ntx007
  46. Martinovic J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094605
  47. Morris RW, 2015, BIOL PSYCHIAT, V77, P187, DOI 10.1016/j.biopsych.2014.06.005
  48. Murschall A, 2006, LEARN MEMORY, V13, P123, DOI 10.1101/lm.127106
  49. O'Doherty JP, 2007, ANN NY ACAD SCI, V1104, P35, DOI 10.1196/annals.1390.022
  50. Paredes-Olay C, 2002, ANIM LEARN BEHAV, V30, P239, DOI 10.3758/BF03192833
  51. Pool E, 2015, J EXP PSYCHOL-ANIM L, V41, P128, DOI 10.1037/xan0000052
  52. Prevost C, 2012, J NEUROSCI, V32, P8383, DOI 10.1523/JNEUROSCI.6237-11.2012
  53. Quail SL, 2017, J EXP PSYCHOL-ANIM L, V43, P315, DOI 10.1037/xan0000148
  54. Quail SL, 2017, Q J EXP PSYCHOL, V70, P675, DOI 10.1080/17470218.2016.1149198
  55. Schad DJ, 2019, EUR ARCH PSY CLIN N, V269, P295, DOI 10.1007/s00406-017-0860-4
  56. Seabrooke T, 2017, J EXP PSYCHOL-ANIM L, V43, P377, DOI 10.1037/xan0000147
  57. Sebold M, 2016, J COGNITIVE NEUROSCI, V28, P985, DOI 10.1162/jocn_a_00945
  58. Sommer C, 2017, TRANSL PSYCHIAT, V7, DOI 10.1038/tp.2017.158
  59. Talmi D, 2008, J NEUROSCI, V28, P360, DOI 10.1523/JNEUROSCI.4028-07.2008
  60. Thewissen R, 2007, PSYCHOPHARMACOLOGY, V194, P33, DOI 10.1007/s00213-007-0819-7
  61. Trentini C. M., 2014, ESCALA WECHSLER ABRE
  62. Tripp G, 2008, J CHILD PSYCHOL PSYC, V49, P691, DOI 10.1111/j.1469-7610.2007.01851.x
  63. van Steenbergen H, 2017, EUR J NEUROSCI, V46, P1815, DOI 10.1111/ejn.13586
  64. Verhoeven AAC, 2018, APPETITE, V120, P616, DOI 10.1016/j.appet.2017.10.020
  65. Vogel V, 2018, BEHAV BRAIN RES, V347, P8, DOI 10.1016/j.bbr.2018.03.009
  66. Watson P, 2014, APPETITE, V79, P139, DOI 10.1016/j.appet.2014.04.005
  67. Weschler D, 1999, WECHSLER ABBREVIATED
  68. Whitton AE, 2015, CURR OPIN PSYCHIATR, V28, P7, DOI 10.1097/YCO.0000000000000122