Therapeutic Efficiency of Multiple Applications of Magnetic Hyperthermia Technique in Glioblastoma Using Aminosilane Coated Iron Oxide Nanoparticles: In Vitro and In Vivo Study

Carregando...
Imagem de Miniatura
Citações na Scopus
35
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
REGO, Gabriel N. A.
MAMANI, Javier B.
OLIVEIRA, Fernando A.
MARTI, Luciana C.
FILGUEIRAS, Igor S.
FERREIRA, Joao M.
ESPINHA, Paloma L.
Citação
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.21, n.3, article ID 958, 31p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Magnetic hyperthermia (MHT) has been shown as a promising alternative therapy for glioblastoma (GBM) treatment. This study consists of three parts: The first part evaluates the heating potential of aminosilane-coated superparamagnetic iron oxide nanoparticles (SPIONa). The second and third parts comprise the evaluation ofMHT multiple applications in GBM model, either in vitro or in vivo. The obtained heating curves of SPIONa (100 nm, +20 mV) and their specific absorption rates (SAR) stablished the best therapeutic conditions for frequencies (309 kHz and 557 kHz) and magnetic field (300 Gauss), which were stablished based on three in vitro MHT application in C6 GBM cell line. The bioluminescence (BLI) signal decayed in all applications and parameters tested and 309 kHz with 300 Gauss have shown to provide the best therapeutic effect. These parameters were also established for three MHT applications in vivo, in which the decay of BLI signal correlates with reduced tumor and also with decreased tumor glucose uptake assessed by positron emission tomography (PET) images. The behavior assessment showed a slight improvement after each MHT therapy, but after three applications the motor function displayed a relevant and progressive improvement until the latest evaluation. Thus, MHT multiple applications allowed an almost total regression of the GBM tumor in vivo. However, futher evaluations after the therapy acute phase are necessary to follow the evolution or tumor total regression. BLI, positron emission tomography (PET), and spontaneous locomotion evaluation techniques were effective in longitudinally monitoring the therapeutic effects of the MHT technique.
Palavras-chave
magnetic hyperthermia, glioblastoma, SPION, nanoparticle, aminosilane, bioluminescence, PET/CT, motor behavior
Referências
  1. Alf MF, 2013, J NUCL MED, V54, P132, DOI 10.2967/jnumed.112.107474
  2. Alphandery E, 2017, J CONTROL RELEASE, V262, P259, DOI 10.1016/j.jconrel.2017.07.020
  3. Alphandery E, 2017, BIOMATERIALS, V141, P210, DOI 10.1016/j.biomaterials.2017.06.026
  4. Aronen HJ, 2000, CLIN CANCER RES, V6, P2189
  5. Atif F, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-018-37399-5
  6. Belanova AA, 2018, ONCOL RES TREAT, V41, P139, DOI 10.1159/000485020
  7. Bolcaen J, 2017, GLIOBLASTOMA, P175, DOI 10.15586/codon.glioblastoma.2017.ch10
  8. Bowman CL, 1996, GLIA, V18, P161, DOI 10.1002/(SICI)1098-1136(199611)18:3<161::AID-GLIA1>3.0.CO;2-2
  9. Braun K, 2017, CURR ONCOL REP, V19, DOI 10.1007/s11912-017-0644-z
  10. Carvalho LA, 2019, JNCI-J NATL CANCER I, V111, P283, DOI 10.1093/jnci/djy138
  11. Chen ZY, 2014, BIOMED RES INT, DOI 10.1155/2014/819324
  12. Cheng Y, 2016, J CONTROL RELEASE, V223, P75, DOI 10.1016/j.jconrel.2015.12.028
  13. Coisson M, 2017, BBA-GEN SUBJECTS, V1861, P1545, DOI 10.1016/j.bbagen.2016.12.006
  14. Colavolpe C, 2012, NEURO-ONCOLOGY, V14, P649, DOI 10.1093/neuonc/nos012
  15. Dadfar SM, 2019, ADV DRUG DELIVER REV, V138, P302, DOI 10.1016/j.addr.2019.01.005
  16. Rego GND, 2019, EINSTEIN-SAO PAULO, V17, DOI [10.31744/einstein_journal/2019ao4786, 10.31744/einstein_journal/2019AO4786]
  17. Del Sol-Fernandez S, 2019, ACS APPL MATER INTER, V11, P26648, DOI 10.1021/acsami.9b08318
  18. Donche S, 2019, FRONT MED-LAUSANNE, V6, DOI 10.3389/fmed.2019.00005
  19. Souza TKF, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0201453
  20. Feng QY, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-19628-z
  21. Feuser PE, 2015, EUR POLYM J, V68, P355, DOI 10.1016/j.eurpolymj.2015.04.029
  22. Fischer BM, 2006, EUR J NUCL MED MOL I, V33, P697, DOI 10.1007/s00259-005-0038-6
  23. Frosina G, 2016, J NEURO-ONCOL, V127, P415, DOI 10.1007/s11060-016-2077-1
  24. Genevois C, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17111815
  25. Grauer O, 2019, J NEURO-ONCOL, V141, P83, DOI 10.1007/s11060-018-03005-x
  26. Guerra-Rebollo M, 2018, MOL THER-ONCOLYTICS, V11, P39, DOI 10.1016/j.omto.2018.09.002
  27. Gupta R, 2019, INT J HYPERTH
  28. Herynek V, 2016, INT J NANOMED, V11, P3801, DOI 10.2147/IJN.S109582
  29. Hu L, 2009, J MATER CHEM, V19, P3108, DOI 10.1039/b815958k
  30. Huang WC, 2017, J CONTROL RELEASE, V254, P119, DOI 10.1016/j.jconrel.2017.03.035
  31. Huszthy PC, 2012, NEURO-ONCOLOGY, V14, P979, DOI 10.1093/neuonc/nos135
  32. Ito A, 2003, CANCER IMMUNOL IMMUN, V52, P80, DOI 10.1007/s00262-002-0335-x
  33. Ito A, 2001, CANCER GENE THER, V8, P649, DOI 10.1038/sj.cgt.7700357
  34. James ML, 2012, PHYSIOL REV, V92, P897, DOI 10.1152/physrev.00049.2010
  35. Jordan A, 2006, J NEURO-ONCOL, V78, P7, DOI 10.1007/s11060-005-9059-z
  36. Kekalo K, 2015, NANO LIFE, V5, DOI 10.1142/S1793984415500026
  37. Kuchma E, 2018, BIOMEDICINES, V6, DOI 10.3390/biomedicines6030078
  38. Li L, 2013, THERANOSTICS, V3, P595, DOI 10.7150/thno.5366
  39. Liu W, 2016, CHEM SCI, V7, P5503, DOI 10.1039/c6sc01503d
  40. Louis DN, 2016, ACTA NEUROPATHOL, V131, P803, DOI 10.1007/s00401-016-1545-1
  41. Ludwig R, 2014, NANOSCALE RES LETT, V9, DOI 10.1186/1556-276X-9-602
  42. Magalhaes CM, 2016, CHEMPHYSCHEM, V17, P2286, DOI 10.1002/cphc.201600270
  43. Maier-Hauff K, 2007, J NEURO-ONCOL, V81, P53, DOI 10.1007/s11060-006-9195-0
  44. Maier-Hauff K, 2011, J NEURO-ONCOL, V103, P317, DOI 10.1007/s11060-010-0389-0
  45. Meca-Cortes O, 2017, MOL THER-NUCL ACIDS, V8, P395, DOI 10.1016/j.omtn.2017.07.012
  46. Merle P, 2017, ESMO OPEN, V2, DOI 10.1136/esmoopen-2017-000238
  47. Mezzanotte L, 2017, TRENDS BIOTECHNOL, V35, P640, DOI 10.1016/j.tibtech.2017.03.012
  48. Milanovic D, 2012, BMC CANCER, V12, DOI 10.1186/1471-2407-12-242
  49. Mirus M, 2019, EJNMMI RES, V9, DOI 10.1186/s13550-019-0502-0
  50. Moreau A, 2019, FRONT ONCOL, V9, DOI 10.3389/fonc.2019.01134
  51. Murayama S, 2012, CHEM COMMUN, V48, P11461, DOI 10.1039/c2cc35567a
  52. Noh SH, 2017, NANO TODAY, V13, P61, DOI 10.1016/j.nantod.2017.02.006
  53. Ostrom QT, 2018, NEURO-ONCOLOGY, V20, P1, DOI 10.1093/neuonc/noy131
  54. Pala K, 2014, INT J NANOMED, V9, P67, DOI 10.2147/IJN.S52539
  55. Pernal S, 2017, ACS APPL MATER INTER, V9, P39283, DOI 10.1021/acsami.7b15116
  56. PETTY RD, 1995, J BIOLUM CHEMILUM, V10, P29, DOI 10.1002/bio.1170100105
  57. Pi ZK, 2019, ANN BIOMED ENG, V47, P549, DOI 10.1007/s10439-018-02141-9
  58. Pisapia DJ, 2017, ARCH PATHOL LAB MED, V141, P1633, DOI 10.5858/arpa.2016-0493-RA
  59. Rabias I, 2010, BIOMICROFLUIDICS, V4, DOI 10.1063/1.3449089
  60. Rivet CJ, 2014, INT J HYPERTHER, V30, P79, DOI 10.3109/02656736.2013.873825
  61. Sanchez-Cabezas S, 2019, DALTON T, V48, P3883, DOI 10.1039/c8dt04685a
  62. Sha W, 2013, EJNMMI RES, V3, DOI 10.1186/2191-219X-3-51
  63. Shubitidze F, 2015, J APPL PHYS, V117, DOI 10.1063/1.4907915
  64. Spirou SV, 2018, NANOMATERIALS-BASEL, V8, DOI 10.3390/nano8060401
  65. Spirou SV, 2018, NANOMATERIALS-BASEL, V8, DOI 10.3390/nano8050306
  66. Stigliano RV, 2016, INT J HYPERTHER, V32, P735, DOI 10.1080/02656736.2016.1195018
  67. Stupp R, 2005, NEW ENGL J MED, V352, P987, DOI 10.1056/NEJMoa043330
  68. Sulman EP, 2017, J CLIN ONCOL, V35, P361, DOI 10.1200/JCO.2016.70.7562
  69. Sun ZZ, 2013, INT J NANOMED, V8, P961, DOI 10.2147/IJN.S39048
  70. SWANSON LW, 1980, NEUROENDOCRINOLOGY, V31, P410, DOI 10.1159/000123111
  71. Tapeinos C, 2019, NANOSCALE, V11, P72, DOI 10.1039/c8nr05520c
  72. Tay ZW, 2018, ACS NANO, V12, P3699, DOI 10.1021/acsnano.8b00893
  73. Toledo M, 2011, ONCOL REP, V25, P189, DOI 10.3892/or_00001060
  74. Tsiapa I, 2014, J COLLOID INTERF SCI, V433, P163, DOI 10.1016/j.jcis.2014.07.032
  75. Van Dort ME, 2008, CURR COMPUT-AID DRUG, V4, P46, DOI 10.2174/157340908783769265
  76. van Landeghem FKH, 2009, BIOMATERIALS, V30, P52, DOI 10.1016/j.biomaterials.2008.09.044
  77. Verger A, 2017, GLIOBLASTOMA, P155, DOI 10.15586/codon.glioblastoma.2017.ch9
  78. Viel T, 2012, J NUCL MED, V53, P1135, DOI 10.2967/jnumed.111.101659
  79. Warnock G, 2013, J NUCL MED, V54, P1782, DOI 10.2967/jnumed.112.117150
  80. Wu VM, 2019, ACTA BIOMATER, V88, P422, DOI 10.1016/j.actbio.2019.01.064
  81. Xu HT, 2019, NANOMATERIALS-BASEL, V9, DOI 10.3390/nano9101457
  82. Yameen B, 2014, J CONTROL RELEASE, V190, P485, DOI 10.1016/j.jconrel.2014.06.038
  83. Yanase M, 1998, JPN J CANCER RES, V89, P775, DOI 10.1111/j.1349-7006.1998.tb03283.x
  84. Yanase M, 1997, JPN J CANCER RES, V88, P630, DOI 10.1111/j.1349-7006.1997.tb00429.x
  85. Yao JW, 2015, CURR PHARM DESIGN, V21, P5256, DOI 10.2174/1381612821666150923103307
  86. Youhannayee M, 2019, J MAGN MAGN MATER, V473, P205, DOI 10.1016/j.jmmm.2018.10.062
  87. Yu EY, 2017, NANO LETT, V17, P1648, DOI 10.1021/acs.nanolett.6b04865
  88. Yuan Y, 2011, J MAGN MAGN MATER, V323, P2463, DOI 10.1016/j.jmmm.2011.05.018
  89. Zamora-Mora V, 2017, CARBOHYD POLYM, V157, P361, DOI 10.1016/j.carbpol.2016.09.084
  90. Zhang Y, 2008, BIOMED MICRODEVICES, V10, P321, DOI 10.1007/s10544-007-9139-2
  91. Zhong LZ, 2019, RADIAT ONCOL, V14, DOI 10.1186/s13014-019-1305-1
  92. Zhu XM, 2012, INT J NANOMED, V7, P953, DOI 10.2147/IJN.S28316