Pro-inflammatory mediators in vaginal fluid and short cervical length in pregnancy

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
COMENIUS UNIV
Autores
SISTI, G.
PACCOSI, S.
PARENTI, A.
SERAVALLI, V
LINARI, C.
TOMMASO, M. Di
Citação
BRATISLAVA MEDICAL JOURNAL-BRATISLAVSKE LEKARSKE LISTY, v.121, n.4, p.278-281, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
AIM: We hypothesized that elevated vaginal levels of matrix metalloproteinase-8 (MMP-8), interleukin-8 (IL-8) and the 70kDa heat shock protein (hsp70), compounds involved in inflammatory responses, correlated with a short cervix in pregnant women. METHODS: This prospective cohort study used a convenience sample of 64 women in their early third trimester with a singleton pregnancy. A short cervical length was present in 35 women (54.7 %). Vaginal fluid was tested for levels of MMP-8, IL-8 and hsp70 by enzyme-linked immunosorbent assay (ELISA). A receiver operating charasteristic (ROC) analysis was used to calculate the area under the curve (AUC) for each mediator in predicting short cervical length. RESULTS: MMP-8 (109 vs 29.6 ng/ml, p=0.014), IL-8 (689 vs 330 pg/ml, p=0.007) and hsp70 (4.4 vs 2.9 ng/ml, p=0.036) were all elevated in vaginal samples from women with a short cervix. In addition, there was a negative association between the concentration of each compound in vaginal fluid and cervical length p <= 0.026). The vaginal IL-8 concentration had the highest negative correlation with a short cervix (AUC=0.7, p=0.007). CONCLUSION: MMP-8, hsp70 and IL-8 contribute to a pro-inflammatory cervico-vaginal milieu that weakens cervical integrity and leads to a shortening in cervical length (Tab. 4, Fig. 1, Ref. 27). Text in PDF www.elis.sk.
Palavras-chave
cervical length, heat shock protein, interleukin-8, matrix metalloproteinase-8, vaginal fluid
Referências
  1. Asea A, 2005, EXERC IMMUNOL REV, V11, P34
  2. Ashford K, 2018, AJP REP, V8, pe113, DOI [10.1055/s-0038-165653, 10.1055/s-0038-1656534]
  3. Chang AM, 2013, J MATERN-FETAL NEO M, V26, P1581, DOI 10.3109/14767058.2013.795535
  4. Choi SR, 2018, TAIWAN J OBSTET GYNE, V57, P407, DOI 10.1016/j.tjog.2018.04.014
  5. Elliott CL, 2001, MOL HUM REPROD, V7, P787, DOI 10.1093/molehr/7.8.787
  6. Fukushima A, 2005, J OBSTET GYNAECOL RE, V31, P72, DOI 10.1111/j.1447-0756.2005.00244.x
  7. Genc MR, 2005, AM J OBSTET GYNECOL, V192, P916, DOI 10.1016/j.ajog.2004.09.023
  8. Guichard C, 2005, J BIOL CHEM, V280, P37021, DOI 10.1074/jbc.M506594200
  9. Hillier SL, 1995, NEW ENGL J MED, V333, P1737, DOI 10.1056/NEJM199512283332604
  10. Iams JD, 1996, NEW ENGL J MED, V334, P567, DOI 10.1056/NEJM199602293340904
  11. Itoh Y, 2005, CYTOKINE, V29, P275, DOI 10.1016/j.cyto.2004.11.005
  12. Jung EY, 2016, J OBSTET GYNAECOL RE, V42, P158, DOI 10.1111/jog.12882
  13. Lee KJ, 2006, EXP MOL MED, V38, P364, DOI 10.1038/emm.2006.43
  14. Li AH, 2003, J IMMUNOL, V170, P3369, DOI 10.4049/jimmunol.170.6.3369
  15. Liu T, 2017, SIGNAL TRANSDUCT TAR, V2, DOI 10.1038/sigtrans.2017.23
  16. Manning R, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-47756-7
  17. Pandey M, 2017, INDIAN J MED RES, V146, P316, DOI 10.4103/ijmr.IJMR_1624_14
  18. Qu BG, 2015, CELL STRESS CHAPERON, V20, P885, DOI 10.1007/s12192-015-0618-8
  19. Rahkonen L, 2010, PRENATAL DIAG, V30, P1079, DOI 10.1002/pd.2614
  20. Raiche E, 2014, J MATERN-FETAL NEO M, V27, P1015, DOI 10.3109/14767058.2013.847917
  21. Romero R, 2014, SCIENCE, V345, P760, DOI 10.1126/science.1251816
  22. Seong WJ, 2015, J OBSTET GYNAECOL RE, V41, P1715, DOI 10.1111/jog.12782
  23. Sims JD, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018848
  24. Thirkettle S, 2013, J BIOL CHEM, V288, P16282, DOI 10.1074/jbc.M113.464230
  25. Van Lint P, 2006, CYTOKINE GROWTH F R, V17, P217, DOI 10.1016/j.cytogfr.2006.04.001
  26. Wang AY, 2013, CELL MICROBIOL, V15, P779, DOI 10.1111/cmi.12071
  27. Yamamoto K, 2015, MATRIX BIOL, V44-46, P255, DOI 10.1016/j.matbio.2015.02.007