Lack of efficacy of echinocandins against high metabolic activity biofilms of Candida parapsilosis clinical isolates

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Citação
BRAZILIAN JOURNAL OF MICROBIOLOGY, v.51, n.3, p.1129-1133, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Candida parapsilosis produces biofilm, which colonizes catheters and other invasive medical devices that are manipulated by health care workers. In previous studies, C. parapsilosis in vitro biofilms have exhibited high resistance rates against conventional antifungals, but susceptibility to both echinocandins and lipid formulations of amphotericin B (lipid complex and liposomal). However, a recent study showed good activity of amphotericin B deoxycholate on the biomass of C. parapsilosis biofilms. Although moderate activity of echinocandins has been demonstrated against low metabolic activity biofilms of C. parapsilosis, few studies have analyzed the action of these drugs on high metabolic activity biofilms. Moreover, high biofilm-forming isolates have been associated with central venous catheter-related fungemia outbreaks and higher mortality rates. Therefore, it is relevant to verify the activity of the main antifungal drugs against high metabolic activity biofilms of C. parapsilosis. Our study aimed to evaluate the in vitro activity of amphotericin B deoxycholate, anidulafungin, caspofungin, and micafungin against high biofilm-forming and high metabolic activity clinical isolates of C. parapsilosis. Our results showed good activity of amphotericin B against C. parapsilosis biofilms, but none of the echinocandin drugs was effective. This suggests that amphotericin B deoxycholate may be a better choice than echinocandins for the treatment of biofilm-associated infections by C. parapsilosis, mainly in countries with insufficient health care resources to purchase lipid formulations of amphotericin B. These results warn of the possibility of persistent catheter-related candidemia caused by high biofilm-forming C. parapsilosis strains when treated with echinocandin drugs.
Palavras-chave
Candida parapsilosis, Biofilm, XTT, Amphotericin B, Echinocandins, Antifungal resistance
Referências
  1. Almirante B, 2017, REV ESP QUIM, V30, P355
  2. Arendrup MC, 2017, EUCAST E DEF, V9, P1
  3. Bouza E, 2015, ANTIBIOTICS-BASEL, V4, P1, DOI 10.3390/antibiotics4010001
  4. Cavalheiro M, 2018, FRONT MED-LAUSANNE, V5, DOI 10.3389/fmed.2018.00028
  5. Clancy CJ, 2016, J FUNGI, V2, DOI 10.3390/jof2010010
  6. Cocuaud C, 2005, J ANTIMICROB CHEMOTH, V56, P507, DOI 10.1093/jac/dki269
  7. Cornely OA, 2012, CLIN MICROBIOL INFEC, V18, P19, DOI 10.1111/1469-0691.12039
  8. Enoch DA, 2017, METHODS MOL BIOL, V1508, P17, DOI 10.1007/978-1-4939-6515-1_2
  9. EUCAST, 2018, BREAKP TABL INT MICS
  10. Fujimoto K, 2018, J INFECT CHEMOTHER, V24, P958, DOI 10.1016/j.jiac.2018.08.011
  11. Garcia-Effron G, 2008, ANTIMICROB AGENTS CH, V52, P2305, DOI 10.1128/AAC.00262-08
  12. Marcos-Zambrano LJ, 2016, MED MYCOL, V54, P155, DOI 10.1093/mmy/myv094
  13. Katragkou A, 2008, ANTIMICROB AGENTS CH, V52, P357, DOI 10.1128/AAC.00856-07
  14. Katragkou A, 2015, CLIN INFECT DIS, V61, pS622, DOI 10.1093/cid/civ746
  15. Kovacs R, 2017, J APPL MICROBIOL, V122, P1529, DOI 10.1111/jam.13452
  16. Kuhn DM, 2002, ANTIMICROB AGENTS CH, V46, P1773, DOI 10.1128/AAC.46.6.1773-1780.2002
  17. Kuhn DM, 2004, EMERG INFECT DIS, V10, P1074, DOI 10.3201/eid1006.030873
  18. Lamoth F, 2018, J ANTIMICROB CHEMOTH, V73, pi4, DOI 10.1093/jac/dkx444
  19. Larkin EL, 2018, J ANTIMICROB CHEMOTH, V73, pi73, DOI 10.1093/jac/dkx451
  20. Lazzell AL, 2009, J ANTIMICROB CHEMOTH, V64, P567, DOI 10.1093/jac/dkp242
  21. Marcos-Zambrano LJ, 2014, INT J MED MICROBIOL, V304, P1192, DOI 10.1016/j.ijmm.2014.08.012
  22. Melo AS, 2011, MED MYCOL, V49, P253, DOI 10.3109/13693786.2010.530032
  23. Munusamy K, 2018, REV IBEROAM MICOL, V35, P68, DOI 10.1016/j.riam.2017.07.001
  24. Pappas PG, 2016, CLIN INFECT DIS, V62, P409, DOI 10.1093/cid/civ1194
  25. Pierce CG, 2008, NAT PROTOC, V3, P1494, DOI 10.1038/nprot.2008.141
  26. Prayska M., 2014, MYCOPATHOLOGIA, V177, P19, DOI [10.1007/s11046-014-9727-724436013, DOI 10.1007/S11046-014-9727-7]
  27. Prazynska M, 2018, FOLIA MICROBIOL, V63, P209, DOI 10.1007/s12223-017-0555-2
  28. Puig-Asensio M, 2014, CLIN MICROBIOL INFEC, V20, pO245, DOI 10.1111/1469-0691.12380
  29. Rodrigues CF, 2017, PATHOGENS, V6, DOI 10.3390/pathogens6040062
  30. Rodriguez-Cerdeira C, 2019, COLLOID SURFACE B, V174, P110, DOI 10.1016/j.colsurfb.2018.11.011
  31. Silva S, 2017, J FUNGI, V3, DOI 10.3390/jof3010008
  32. Silva S, 2011, TRENDS MICROBIOL, V19, P241, DOI 10.1016/j.tim.2011.02.003
  33. Simitsopoulou M, 2013, ANTIMICROB AGENTS CH, V57, P2562, DOI 10.1128/AAC.02541-12
  34. Singaravelu K, 2014, REV IBEROAM MICOL, V31, P16, DOI 10.1016/j.riam.2013.09.018
  35. Soldini S, 2018, CLIN MICROBIOL INFEC, V24, P771, DOI 10.1016/j.cmi.2017.11.005
  36. Swaminathan S, 2018, INDIAN J MED MICROBI, V36, P87, DOI 10.4103/ijmm.IJMM_17_400
  37. Taff HT, 2013, FUTURE MICROBIOL, V8, P1325, DOI 10.2217/fmb.13.101
  38. Trofa D, 2008, CLIN MICROBIOL REV, V21, P606, DOI 10.1128/CMR.00013-08
  39. Valentin A, 2016, J ANTIMICROB CHEMOTH, V71, P3449, DOI 10.1093/jac/dkw316