Effects of elastic tape on thoracoabdominal mechanics, dyspnea, exercise capacity, and physical activity level in nonobese male subjects with COPD

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER PHYSIOLOGICAL SOC
Citação
JOURNAL OF APPLIED PHYSIOLOGY, v.129, n.3, p.492-499, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Subjects with severe and very severe chronic obstructive pulmonary disease (COPD) present thoracoabdominal asynchrony (TAA) that reduces ventilatory efficiency and exercise capacity. However, no therapeutic intervention has focused on reducing TAA. The purpose of this study was to evaluate the effects of elastic tape (ET) on thoracoabdominal mechanics, dyspnea symptoms, exercise capacity, and physical activity level in nonobese male subjects with severe-to-very severe COPD. This crossover, randomized trial included nonobese males with severe to very severe COPD. ET was placed on the chest wall and abdomen to reduce TAA. Subjects were evaluated at three hospital visits, each 7 days apart. At visit 1, thoracoabdominal kinematic and pulmonary ventilation were evaluated by optoelectronic plethysmography and electrical impedance tomography, respectively, both at rest and during isoload exercise testing. At visit 2, a cardiopulmonary exercise test (CPET; 10 W/min) was performed until exhaustion. Between the visits, subjects used a physical activity monitor (PAM) (at least 5 days of measurement; 10 h/day). At visit 3, all the tests were repeated in the opposite order of the previous randomization. During the isoload exercise, subjects with ET presented lower tidal and minute volumes (P = 0.01) and reduced TAA (P = 0.02) and dyspnea (P = 0.04). During the CPET, subjects with ET presented an increase in peak oxygen consumption (V)over dotO(2peak); L/min and mL.kg(-1).min(-1); P = 0.01), test duration (P = 0.009), and maximal load (P = 0.03). Moderate and vigorous physical activity (MVPA), which was evaluated by the PAM, was also increased in subjects with ET (P = 0.01). ET reduced TAA and dyspnea and increased exercise capacity and the duration of MVPA in nonobese male subjects with severe-to-very severe COPD NEW & NOTEWORTHY Elastic tape can be used as a new and low-cost intervention to reduce thoracoabdominal asynchrony and sedentary behavior as well as improve exercise capacity and physical activity level in nonobese male subjects with severe-to-very severe chronic obstructive pulmonary disease.
Palavras-chave
COPD, dyspnea, exercise capacity, physical capacity, respiratory mechanics
Referências
  1. Aliverti A, 2009, EUR RESPIR J, V33, P49, DOI 10.1183/09031936.00141607
  2. ATS, 2003, AM J RESP CRIT CARE, V167, P211, DOI 10.1164/rccm.167.2.211
  3. BELMAN MJ, 1992, CHEST, V102, P1028, DOI 10.1378/chest.102.4.1028
  4. Cala S. J., 1985, J APPL PHYSIOL, V81, P2680
  5. Casaburi R, 1997, AM J RESP CRIT CARE, V155, P1541, DOI 10.1164/ajrccm.155.5.9154855
  6. Craig CL, 2003, MED SCI SPORT EXER, V35, P1381, DOI 10.1249/01.MSS.0000078924.61453.FB
  7. Durheim MT, 2015, ANN AM THORAC SOC, V12, P349, DOI 10.1513/AnnalsATS.201408-365OC
  8. Ferreira PG, 2017, J APPL PHYSIOL, V123, P585, DOI 10.1152/japplphysiol.00655.2016
  9. Frerichs I, 2017, THORAX, V72, P83, DOI 10.1136/thoraxjnl-2016-208357
  10. Gagnon P, 2014, INT J CHRONIC OBSTR, V9, P187, DOI 10.2147/COPD.S38934
  11. Garcia-Aymerich J, 2006, THORAX, V61, P772, DOI 10.1136/thx.2006.060145
  12. GILMARTIN JJ, 1986, AM REV RESPIR DIS, V134, P683
  13. Global Initiative for Chronic Obstructive Lung Disease (GOLD), GLOB STRAT DIAGN MAN
  14. Global Initiative for Chronic Obstructive Lung Disease (GOLD), 2016, GLOB STRAT DIAGN MAN
  15. Golemati S, 2009, IEEE ENG MED BIO, P2871, DOI 10.1109/IEMBS.2009.5333106
  16. Jaraczewska E, 2006, TOP STROKE REHABIL, V13, P31, DOI 10.1310/33KA-XYE3-QWJB-WGT6
  17. JONES NL, 1985, AM REV RESPIR DIS, V131, P700
  18. Kawachi S, 2019, INT J CHRONIC OBSTR, V14, P1167, DOI 10.2147/COPD.S201106
  19. KONNO K, 1967, J APPL PHYSIOL, V22, P407
  20. Krajczy M, 2012, SCI WORLD J, DOI 10.1100/2012/948282
  21. Lunardi AC, 2015, CHEST, V148, P1003, DOI 10.1378/chest.14-2696
  22. Mantoani LC, 2017, EXPERT REV RESP MED, V11, P685, DOI 10.1080/17476348.2017.1354699
  23. Miller MR, 2005, EUR RESPIR J, V26, P319, DOI 10.1183/09031936.05.00034805
  24. Motto AL, 2005, IEEE T BIO-MED ENG, V52, P614, DOI 10.1109/TBME.2005.844026
  25. Neder JA, 1999, EUR RESPIR J, V14, P1304, DOI 10.1183/09031936.99.14613049
  26. Neder JA, 1999, BRAZ J MED BIOL RES, V32, P703, DOI 10.1590/S0100-879X1999000600006
  27. Ora J, 2011, J APPL PHYSIOL, V111, P10, DOI 10.1152/japplphysiol.01131.2010
  28. Paisani DD, 2013, RESP CARE, V58, P1360, DOI 10.4187/respcare.02037
  29. Pellegrino R, 1998, CHEST, V114, P1607, DOI 10.1378/chest.114.6.1607
  30. Pereira CA, 1992, J PNEUMOL, V18, P10
  31. Porras DC, 2017, J APPL PHYSIOL, V122, P1106, DOI 10.1152/japplphysiol.00508.2016
  32. Priori R, 2013, J APPL PHYSIOL, V114, P1066, DOI 10.1152/japplphysiol.00414.2012
  33. Puente-Maestu L, 2016, EUR RESPIR J, V47, P429, DOI 10.1183/13993003.00745-2015
  34. Romagnoli I, 2011, RESP PHYSIOL NEUROBI, V178, P242, DOI 10.1016/j.resp.2011.06.014
  35. Spruit MA, 2013, AM J RESP CRIT CARE, V188, pE13, DOI 10.1164/rccm.201309-1634ST
  36. Vogt B, 2016, AM J PHYSIOL-LUNG C, V311, pL8, DOI 10.1152/ajplung.00463.2015
  37. Wasserman K, 1999, PRINCIPLES EXERCISE, P105
  38. Xavier RF, 2019, LUNG, V197, P37, DOI 10.1007/s00408-018-0177-8
  39. Yamaguti WP, 2012, ARCH PHYS MED REHAB, V93, P571, DOI 10.1016/j.apmr.2011.11.026
  40. Zainuldin Muhammad R, 2007, BMC Pulm Med, V7, P9, DOI 10.1186/1471-2466-7-9