Rapid hippocampal plasticity supports motor sequence learning

Carregando...
Imagem de Miniatura
Citações na Scopus
33
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATL ACAD SCIENCES
Autores
JACOBACCI, Florencia
ARMONY, Jorge L.
YEFFAL, Abraham
LERNER, Gonzalo
JOVICICH, Jorge
DOYON, Julien
DELLA-MAGGIORE, Valeria
Citação
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, v.117, n.38, p.23898-23903, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Recent evidence suggests that gains in performance observed while humans learn a novel motor sequence occur during the quiet rest periods interleaved with practice (micro-offline gains, MOGs). This phenomenon is reminiscent of memory replay observed in the hippocampus during spatial learning in rodents. Whether the hippocampus is also involved in the production of MOGs remains currently unknown. Using a multimodal approach in humans, here we show that activity in the hippocampus and the precuneus increases during the quiet rest periods and predicts the level of MOGs before asymptotic performance is achieved. These functional changes were followed by rapid alterations in brain microstructure in the order of minutes, suggesting that the same network that reactivates during the quiet periods of training undergoes structural plasticity. Our work points to the involvement of the hippocampal system in the reactivation of procedural memories.
Palavras-chave
hippocampus, structural plasticity, functional MRI, reactivation, motor sequence learning
Referências
  1. Albouy G, 2015, NEUROIMAGE, V108, P423, DOI 10.1016/j.neuroimage.2014.12.049
  2. Andersson JLR, 2016, NEUROIMAGE, V125, P1063, DOI 10.1016/j.neuroimage.2015.10.019
  3. Andersson JLR, 2003, NEUROIMAGE, V20, P870, DOI 10.1016/S1053-8119(03)00336-7
  4. Assaf Y, 2004, MAGN RESON MED, V52, P965, DOI 10.1002/mrm.20274
  5. Bakdash JZ, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.00456
  6. Basser PJ, 1995, NMR BIOMED, V8, P333, DOI 10.1002/nbm.1940080707
  7. Basser PJ, 1996, J MAGN RESON SER B, V111, P209, DOI 10.1016/j.jmr.2011.09.022
  8. Beaulieu C, 2002, NMR BIOMED, V15, P435, DOI 10.1002/nbm.782
  9. Bonstrup M, 2019, CURR BIOL, V29, P1346, DOI 10.1016/j.cub.2019.02.049
  10. Brainard DH, 1997, SPATIAL VISION, V10, P433, DOI 10.1163/156856897X00357
  11. Brodt S, 2018, SCIENCE, V362, P1045, DOI 10.1126/science.aau2528
  12. Buzsaki G, 2018, TRENDS COGN SCI, V22, P853, DOI 10.1016/j.tics.2018.07.006
  13. Debas K, 2010, P NATL ACAD SCI USA, V107, P17839, DOI 10.1073/pnas.1013176107
  14. Dohring J, 2017, CORTEX, V89, P156, DOI 10.1016/j.cortex.2016.10.009
  15. Doyon J, 2003, NEUROPSYCHOLOGIA, V41, P252, DOI 10.1016/S0028-3932(02)00158-6
  16. Foster DJ, 2017, ANNU REV NEUROSCI, V40, P581, DOI 10.1146/annurev-neuro-072116-031538
  17. Glasser MF, 2013, NEUROIMAGE, V80, P105, DOI 10.1016/j.neuroimage.2013.04.127
  18. Guillaume B, 2014, NEUROIMAGE, V94, P287, DOI 10.1016/j.neuroimage.2014.03.029
  19. Gupta AS, 2010, NEURON, V65, P695, DOI 10.1016/j.neuron.2010.01.034
  20. Jacobacci F, 2020, J MAGN RESON IMAGING, V52, P766, DOI 10.1002/jmri.27092
  21. Jones DK, 2013, NEUROIMAGE, V73, P239, DOI 10.1016/j.neuroimage.2012.06.081
  22. Jones DK, 2004, MAGNET RESON MED, V51, P807, DOI 10.1002/mrm.20033
  23. Jones DK, 1999, MAGNET RESON MED, V42, P515, DOI 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q
  24. Leys C, 2013, J EXP SOC PSYCHOL, V49, P764, DOI 10.1016/j.jesp.2013.03.013
  25. Li XR, 2016, J NEUROSCI METH, V264, P47, DOI 10.1016/j.jneumeth.2016.03.001
  26. Margulies DS, 2009, P NATL ACAD SCI USA, V106, P20069, DOI 10.1073/pnas.0905314106
  27. Marques JP, 2010, NEUROIMAGE, V49, P1271, DOI 10.1016/j.neuroimage.2009.10.002
  28. Morey RD, 2008, TUTOR QUANT METHODS, V4, P61, DOI 10.20982/tqmp.04.2.p061
  29. OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4
  30. Pfeiffer BE, 2013, NATURE, V497, P74, DOI 10.1038/nature12112
  31. R Core Team, 2017, LANG ENV STAT COMP
  32. Sagi Y, 2012, NEURON, V73, P1195, DOI 10.1016/j.neuron.2012.01.025
  33. Sawangjit A, 2018, NATURE, V564, P109, DOI 10.1038/s41586-018-0716-8
  34. Schapiro AC, 2019, HIPPOCAMPUS, V29, P1091, DOI 10.1002/hipo.23101
  35. Schapiro AC, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-06213-1
  36. Smith SM, 2007, NAT PROTOC, V2, P499, DOI 10.1038/nprot.2007.45
  37. Smith SM, 2009, NEUROIMAGE, V44, P83, DOI 10.1016/j.neuroimage.2008.03.061
  38. Tambini A, 2013, P NATL ACAD SCI USA, V110, P19591, DOI 10.1073/pnas.1308499110
  39. Tambini A, 2010, NEURON, V65, P280, DOI 10.1016/j.neuron.2010.01.001
  40. Tavor I, 2020, HUM BRAIN MAPP, V41, P442, DOI 10.1002/hbm.24814
  41. Tavor I, 2013, NEUROIMAGE, V81, P1, DOI 10.1016/j.neuroimage.2013.05.050
  42. Ugurbil K, 2013, NEUROIMAGE, V80, P80, DOI 10.1016/j.neuroimage.2013.05.012
  43. Xu JQ, 2013, NEUROIMAGE, V83, P991, DOI 10.1016/j.neuroimage.2013.07.055