The risk of malaria infection for travelers visiting the Brazilian Amazonian region: A mathematical modeling approach

Carregando...
Imagem de Miniatura
Citações na Scopus
8
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Autores
MASSAD, Eduardo
LAPORTA, Gabriel Zorello
CONN, Jan Evelyn
CHAVES, Leonardo Suveges
BERGO, Eduardo Sterlino
FIGUEIRA, Elder Augusto Guimaraes
STRUCHINER, Claudio
SALLUM, Maria Anice Mureb
Citação
TRAVEL MEDICINE AND INFECTIOUS DISEASE, v.37, article ID 101792, 11p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Human mobility between malaria endemic and malaria-free areas can hinder control and elimination efforts in the Amazon basin, maintaining Plasmodium circulation and introduction to new areas. Methods: The analysis begins by estimating the incidence of malaria in areas of interest. Then, the risk of infection as a function of the duration of stay after t(0) was calculated as the number of infected travelers over the number of arrived travelers. Differential equations were employed to estimate the risk of nonimmune travelers acquiring malaria in Amazonian municipalities. Risk was calculated as a result of the force of the infection in terms of local dynamics per time of arrival and duration of visit. Results: Maximum risk occurred at the peak or at the end of the rainy season and it was nonlinearly (exponentially) correlated with the fraction of infected mosquitoes. Relationship between the risk of malaria and duration of visit was linear and positively correlated. Relationship between the risk of malaria and the time of arrival in the municipality was dependent on local effects of seasonality. Conclusions: The risk of nonimmune travelers acquiring malaria is not negligible and can maintain regional circulation of parasites, propagating introductions in areas where malaria has been eliminated.
Palavras-chave
Malaria risk, Mathematical modeling, Rural settlements, Amazon, Brazil
Referências
  1. Angelo JR, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0172330
  2. Ashley EA, 2014, NEW ENGL J MED, V371, P411, DOI 10.1056/NEJMoa1314981
  3. Ashley EA, 2018, LANCET, V391, P1608, DOI 10.1016/S0140-6736(18)30324-6
  4. Askling HH, 2005, EMERG INFECT DIS, V11, P436, DOI 10.3201/eid1103.040677
  5. Bickersmith SA, 2015, MEM I OSWALDO CRUZ, V110, P573, DOI 10.1590/0074-02760150031
  6. Carlos BC, 2019, PATHOG GLOB HEALTH, V113, P1, DOI 10.1080/20477724.2019.1581463
  7. Cohen JM, 2017, MALARIA J, V16, DOI 10.1186/s12936-017-2106-3
  8. de Castro MC, 2006, P NATL ACAD SCI USA, V103, P2452, DOI 10.1073/pnas.0510576103
  9. Padilha MAD, 2019, MALARIA J, V18, DOI 10.1186/s12936-019-2938-0
  10. de Rios MD, 2010, ANTHR CONSCIOUS, V16, P298
  11. Douine M, 2019, MALARIA J, V18, DOI 10.1186/s12936-019-2721-2
  12. Douine M, 2018, MALARIA J, V17, DOI 10.1186/s12936-018-2306-5
  13. Douine M, 2016, MALARIA J, V15, DOI 10.1186/s12936-016-1367-6
  14. Ferreira Marcelo U, 2019, Methods Mol Biol, V2013, P57, DOI 10.1007/978-1-4939-9550-9_4
  15. Grillet ME, 2019, LANCET INFECT DIS, V19, pE149, DOI 10.1016/S1473-3099(18)30757-6
  16. Grillet ME, 2018, SCIENCE, V359, P528, DOI 10.1126/science.aar5440
  17. Guerra CA, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-10339-1
  18. Gutierrez-Ocampo E, 2020, TRAVEL MED INFECT DI, V33, DOI 10.1016/j.tmaid.2020.101560
  19. Imwong M, 2017, LANCET INFECT DIS, V17, P491, DOI [10.1016/s1473-3099(17)30048-8, 10.1016/S1473-3099(17)30048-8]
  20. Lai SJ, 2019, MALARIA J, V18, DOI 10.1186/s12936-019-2736-8
  21. Lalloo DG, 2019, TRAVEL MED, P137
  22. Laporta GZ, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002139
  23. Lima NF, 2012, EXP PARASITOL, V132, P348, DOI 10.1016/j.exppara.2012.08.010
  24. Luthi B, 2015, TRAVEL MED INFECT DI, V13, P48, DOI 10.1016/j.tmaid.2014.04.014
  25. Massad E, 2011, MALARIA J, V10, DOI 10.1186/1475-2875-10-130
  26. Massad E, 2009, MALARIA J, V8, DOI 10.1186/1475-2875-8-296
  27. Menard D, 2017, CSH PERSPECT MED, V7, DOI 10.1101/cshperspect.a025619
  28. Ministerio da Saude do Brasil, 2018, SIV MAL SIST EL SERV
  29. Chaves LSM, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-25344-5
  30. Packard RM, 2014, NEW ENGL J MED, V371, P397, DOI 10.1056/NEJMp1403340
  31. Pasco M., 2018, Journal of Tourism and Leisure Studies, V3, P1, DOI 10.18848/2470-9336/CGP/v03i01/1-22
  32. Rampling T, 2019, CLIN MED, V19, P153, DOI 10.7861/clinmedicine.19-2-153
  33. Richards P, 2015, ANN ASSOC AM GEOGR, V105, P806, DOI 10.1080/00045608.2015.1052337
  34. Rodriguez-Morales AJ, 2019, TRAVEL MED INFECT DI, V30, P4, DOI 10.1016/j.tmaid.2019.05.014
  35. Rodriguez-Morales AJ, 2019, TRAVEL MED INFECT DI, V28, P98, DOI 10.1016/j.tmaid.2019.02.004
  36. Rodriguez-Morales AJ, 2019, TRAVEL MED INFECT DI, V27, P5, DOI 10.1016/j.tmaid.2018.10.010
  37. Ruschmann D. v. d. M., 1992, Tourism Management, V13, P125, DOI 10.1016/0261-5177(92)90048-C
  38. Sallum MAM, 2019, MALARIA J, V18, DOI 10.1186/s12936-019-2753-7
  39. Shretta R, 2017, MAJOR INFECT DIS
  40. Silveira Luciana Braga, 2013, Rev. Adm. Pública, V47, P671, DOI 10.1590/S0034-76122013000300007
  41. Smith JL, 2019, MALARIA J, V18, DOI 10.1186/s12936-019-2791-1
  42. Sturrock HJW, 2015, AM J TROP MED HYG, V93, P139, DOI 10.4269/ajtmh.14-0256
  43. Tedrow RE, 2019, TRENDS PARASITOL, P30215
  44. Tejedor-Garavito N, 2010, TRAVEL PATTERNS DEMO
  45. Uherek CB, 2014, INT J ECOL, P1
  46. Wiens JJ, 2011, ECOL LETT, V14, P643, DOI 10.1111/j.1461-0248.2011.01625.x
  47. Winkelman M, 2005, J PSYCHOACTIVE DRUGS, V37, P209, DOI 10.1080/02791072.2005.10399803
  48. Woodrow CJ, 2017, FEMS MICROBIOL REV, V41, P34, DOI 10.1093/femsre/fuw037
  49. World Health Organization, 2018, WORLD MAL REP 2018
  50. Zhang SS, 2019, INFECT DIS POVERTY, V8, DOI 10.1186/s40249-019-0571-3