Uses and pitfalls of measurement of end-tidal carbon dioxide during cardiac arrest

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Autores
NICHOLSON, Tonia C.
Citação
CURRENT OPINION IN CRITICAL CARE, v.26, n.6, p.612-616, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Purpose of review To discuss recent studies relevant to the utility of measuring end-tidal carbon dioxide (ETCO2) during cardiopulmonary resuscitation (CPR) and its correlation with outcome in adults experiencing cardiac arrest. Recent findings Over the past couple of years, at least five studies have included measurement of ETCO2 in their methods. Two of these studies were prospective and two retrospective. All considered ETCO2 measurements after out-of-hospital cardiac arrest, either in the prehospital setting, or after arrival in the emergency department. All assessed for an association between ETCO2 measurement and return of spontaneous circulation (ROSC). However, the timing of measurement, whether a one-off value or a trend and the cut-off values used to determine whether or not there was an association were different in all cases. Higher values of ETCO2 during resuscitation from cardiac arrest are generally associated with a greater likelihood of ROSC. However, timing of measurements and cut-off values used show significant variability across different studies, making it hard to draw any conclusions about the utility of any particular reading for prognostication. Future studies might aim to develop an accepted standard for the timing and cut-off value of ETCO2 used, to enable comparison of the parameter across different studies.
Palavras-chave
advanced cardiac life support, cardiac arrest, end tidal carbon dioxide, prognostication
Referências
  1. Aufderheide Tom P, 2004, Crit Care Med, V32, pS345, DOI 10.1097/01.CCM.0000134335.46859.09
  2. Calbay A, 2019, TURK J MED SCI, V49, P1298, DOI 10.3906/sag-1812-156
  3. Cantineau JP, 1996, CRIT CARE MED, V24, P791, DOI 10.1097/00003246-199605000-00011
  4. Eckstein M, 2011, PREHOSP DISASTER MED, V26, P148, DOI 10.1017/S1049023X11006376
  5. Engel TW, 2019, RESUSCITATION, V139, P174, DOI 10.1016/j.resuscitation.2019.04.006
  6. GARNETT AR, 1987, JAMA-J AM MED ASSOC, V257, P512, DOI 10.1001/jama.257.4.512
  7. Grmec S, 2003, CRIT CARE, V7, pR139, DOI 10.1186/cc2369
  8. Heradstveit BE, 2012, RESUSCITATION, V83, P813, DOI 10.1016/j.resuscitation.2012.02.021
  9. Hosmer Jr DW, 2013, APPL LOGISTIC REGRES
  10. Javaudin F, 2020, PREHOSP EMERG CARE, V24, P478, DOI 10.1080/10903127.2019.1680782
  11. KALENDA Z, 1978, RESUSCITATION, V6, P259, DOI 10.1016/0300-9572(78)90006-0
  12. Levine RL, 1997, NEW ENGL J MED, V337, P301, DOI 10.1056/NEJM199707313370503
  13. LEWIS LM, 1992, ANN EMERG MED, V21, P1131, DOI 10.1016/S0196-0644(05)80658-4
  14. Lindberg L, 2000, RESUSCITATION, V43, P129, DOI 10.1016/S0300-9572(99)00129-X
  15. Murphy RA, 2016, PREHOSP EMERG CARE, V20, P369, DOI 10.3109/10903127.2015.1115929
  16. OKAMOTO H, 1995, ACTA ANAESTH SCAND, V39, P79, DOI 10.1111/j.1399-6576.1995.tb05596.x
  17. Pokorna M, 2010, J EMERG MED, V38, P614, DOI 10.1016/j.jemermed.2009.04.064
  18. Poppe M, 2019, EUR J ANAESTH, V36, P524, DOI 10.1097/EJA.0000000000000999
  19. Salen P, 2001, ACAD EMERG MED, V8, P610, DOI 10.1111/j.1553-2712.2001.tb00172.x
  20. Soar J, 2015, RESUSCITATION, V95, pE71, DOI 10.1016/j.resuscitation.2015.07.042