Cortical Volume Differences in Subjects at Risk for Psychosis Are Driven by Surface Area

Carregando...
Imagem de Miniatura
Citações na Scopus
14
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS
Autores
BUECHLER, Roman
WOTRUBA, Diana
MICHELS, Lars
THEODORIDOU, Anastasia
METZLER, Sibylle
WALITZA, Susanne
HANGGI, Jurgen
KOLLIAS, Spyros
ROSSLER, Wulf
HEEKEREN, Karsten
Citação
SCHIZOPHRENIA BULLETIN, v.46, n.6, p.1511-1519, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
In subjects at risk for psychosis, the studies on gray matter volume (GMV) predominantly reported volume loss compared with healthy controls (CON). However, other important morphological measurements such as cortical surface area (CSA) and cortical thickness (CT) were not systematically compared. So far, samples mostly comprised subjects at genetic risk or at clinical risk fulfilling an ultra-high risk (UHR) criterion. No studies comparing UHR subjects with at-risk subjects showing only basic symptoms (BS) investigated the differences in CSA or CT. Therefore, we aimed to unravel the contribution of the 2 morphometrical measures constituting the cortical volume (CV) and to test whether these groups inhere different morphometric features. We conducted a surface-based morphometric analysis in 34 CON, 46 BS, and 39 UHR to examine between-group differences in CV, CSA, and CT vertex-wise across the whole cortex. Compared with BS and CON, UHR individuals presented increased CV in frontal and parietal regions, which was driven by larger CSA. These groups did not differ in CT. Yet, at-risk subjects who later developed schizophrenia showed thinning in the occipital cortex. Furthermore, BS presented increased CSA compared with CON. Our results suggest that volumetric differences in UHR subjects are driven by CSA while CV loss in converters seems to be based on cortical thinning. We attribute the larger CSA in UHR to aberrant pruning representing a vulnerability to develop psychotic symptoms reflected in different levels of vulnerability for BS and UHR, and cortical thinning to a presumably stress-related cortical decomposition.
Palavras-chave
schizophrenia, surface-based morphometry, cortical thickness, prodrome
Referências
  1. Benetti S, 2013, SCHIZOPHR RES, V150, P505, DOI 10.1016/j.schres.2013.08.030
  2. Bois C, 2015, BIOL PSYCHIAT, V78, P413, DOI 10.1016/j.biopsych.2014.12.030
  3. Borgwardt S, 2011, SCHIZOPHR RES, V133, P63, DOI 10.1016/j.schres.2011.08.021
  4. Cannon TD, 2015, BIOL PSYCHIAT, V77, P147, DOI 10.1016/j.biopsych.2014.05.023
  5. Catts VS, 2013, FRONT CELL NEUROSCI, V7, DOI 10.3389/fncel.2013.00060
  6. Chang M, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163749
  7. Chen CH, 2013, P NATL ACAD SCI USA, V110, P17089, DOI 10.1073/pnas.1308091110
  8. DeLisi LE, 1997, SCHIZOPHR RES, V23, P119, DOI 10.1016/S0920-9964(96)00079-5
  9. Dickerson BC, 2009, NEUROBIOL AGING, V30, P432, DOI 10.1016/j.neurobiolaging.2007.07.022
  10. Dukart J, 2017, J PSYCHIATR NEUROSCI, V42, P307, DOI 10.1503/jpn.160179
  11. FEINBERG I, 1983, J PSYCHIAT RES, V17, P319, DOI 10.1016/0022-3956(82)90038-3
  12. Fornito A, 2009, SCHIZOPHR RES, V108, P104, DOI 10.1016/j.schres.2008.12.011
  13. Fornito A, 2008, BIOL PSYCHIAT, V64, P758, DOI 10.1016/j.biopsych.2008.05.032
  14. Frank MJ, 2008, SCHIZOPHRENIA BULL, V34, P1008, DOI 10.1093/schbul/sbn123
  15. Frick LR, 2013, CLIN DEV IMMUNOL, DOI 10.1155/2013/608654
  16. Fusar-Poli P, 2013, NEUROSCI BIOBEHAV R, V37, P1680, DOI 10.1016/j.neubiorev.2013.06.001
  17. Fusar-Poli P, 2011, NEUROSCI BIOBEHAV R, V35, P1175, DOI 10.1016/j.neubiorev.2010.12.005
  18. Fusar-Poli P, 2012, SCHIZOPHRENIA BULL, V38, P1297, DOI 10.1093/schbul/sbr134
  19. Fusar-Poli P, 2013, JAMA PSYCHIAT, V70, P107, DOI 10.1001/jamapsychiatry.2013.269
  20. Hafner H, 2004, EUR ARCH PSY CLIN N, V254, P117, DOI 10.1007/s00406-004-0508-z
  21. Haller S, 2009, RADIOLOGY, V250, P212, DOI 10.1148/radiol.2501072153
  22. Horn W., 1983, L P S LEISTUNGSPRUFS
  23. Huys QJM, 2015, CLIN PSYCHOL SCI, V3, P400, DOI 10.1177/2167702614562040
  24. Jimeno N, 2020, SCHIZOPHR B
  25. Jung Wi Hoon, 2012, Front Psychiatry, V3, P101, DOI 10.3389/fpsyt.2012.00101
  26. Jung WH, 2011, SCHIZOPHRENIA BULL, V37, P839, DOI 10.1093/schbul/sbp151
  27. Klauser P, 2015, SCHIZOPHRENIA BULL, V41, P1285, DOI 10.1093/schbul/sbv012
  28. Koutsouleris N, 2014, SCHIZOPHRENIA BULL, V40, P1140, DOI 10.1093/schbul/sbt142
  29. Koutsouleris N, 2010, SCHIZOPHR RES, V123, P175, DOI 10.1016/j.schres.2010.08.032
  30. Koutsouleris N, 2009, BRIT J PSYCHIAT, V195, P218, DOI 10.1192/bjp.bp.108.052068
  31. Lehrl S, 1999, MEHRFACHWAHL WORTSCH, P4
  32. Li G, 2016, BRAIN STRUCT FUNCT, V221, P447, DOI 10.1007/s00429-014-0917-3
  33. Li XB, 2012, PSYCHIAT RES-NEUROIM, V201, P182, DOI 10.1016/j.pscychresns.2011.07.017
  34. Lo Cascio N, 2016, EUR CHILD ADOLES PSY, V25, P1091, DOI 10.1007/s00787-016-0832-7
  35. Lyall AE, 2015, CEREB CORTEX, V25, P2204, DOI 10.1093/cercor/bhu027
  36. McEwen BS, 2011, ANNU REV MED, V62, P431, DOI 10.1146/annurev-med-052209-100430
  37. McGlashan TH, 2001, STRUCTURED INTERVIEW
  38. Metzler S, 2014, PSYCHOL MED, V44, P3543, DOI 10.1017/S0033291714001007
  39. Meyer U, 2013, PROG NEURO-PSYCHOPH, V42, P20, DOI 10.1016/j.pnpbp.2011.11.003
  40. Muraki K, 2015, FRONT NEUROSCI-SWITZ, V9, DOI 10.3389/fnins.2015.00074
  41. Nygaard GO, 2015, MULT SCLER J, V21, P402, DOI 10.1177/1352458514543811
  42. OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4
  43. Organization WH, 1992, ICD 10 ICD 10 CLASS, P374
  44. Palaniyappan L, 2017, J PSYCHIATR NEUROSCI, V42, P294, DOI 10.1503/jpn.170137
  45. Palaniyappan L, 2013, NEUROPSYCHOPHARMACOL, V38, P1808, DOI 10.1038/npp.2013.80
  46. Panizzon MS, 2009, CEREB CORTEX, V19, P2728, DOI 10.1093/cercor/bhp026
  47. Pontious A, 2008, DEV NEUROSCI-BASEL, V30, P24, DOI 10.1159/000109848
  48. Prasad KM, 2010, SCHIZOPHR RES, V116, P143, DOI 10.1016/j.schres.2009.11.003
  49. R Core Team, 2015, R LANG ENV STAT COMP
  50. RAKIC P, 1988, SCIENCE, V241, P170, DOI 10.1126/science.3291116
  51. Rimol LM, 2012, BIOL PSYCHIAT, V71, P552, DOI 10.1016/j.biopsych.2011.11.026
  52. Ruhrmann S, 2003, PHARMACOPSYCHIATRY, V36, pS162
  53. Sakuma A, 2018, ASIAN J PSYCHIATR, V37, P167, DOI 10.1016/j.ajp.2018.09.009
  54. Schnack HG, 2015, CEREB CORTEX, V25, P1608, DOI 10.1093/cercor/bht357
  55. Schultze-Lutter F, 2015, EUR PSYCHIAT, V30, P405, DOI 10.1016/j.eurpsy.2015.01.010
  56. Schultze-Lutter F, 2010, SCHIZOPHRENIA PRONEN
  57. Schultze-Lutter F, 2007, SCHIZOPHRENIA PRONEN
  58. Schultze-Lutter F, 2011, SCHIZOPHRENIA BULL, V37, P653, DOI 10.1093/schbul/sbr039
  59. Schultze-Lutter F, 2010, SCHIZOPHRENIA BULL, V36, P182, DOI 10.1093/schbul/sbn072
  60. Sheehan DV, 1998, J CLIN PSYCHIAT, V59, P22, DOI 10.4088/JCP.09m05305whi
  61. Sled JG, 1998, IEEE T MED IMAGING, V17, P653, DOI 10.1109/42.730409
  62. Smieskova R, 2009, CURR PHARM DESIGN, V15, P2535, DOI 10.2174/138161209788957456
  63. Stephan KE, 2006, BIOL PSYCHIAT, V59, P929, DOI 10.1016/j.biopsych.2005.10.005
  64. Takayanagi Y, 2017, SCHIZOPHRENIA BULL, V43, P907, DOI 10.1093/schbul/sbw167
  65. Theodoridou A, 2014, FRONT PUBLIC HEALTH, V2, DOI 10.3389/fpubh.2014.00166
  66. Thermenos HW, 2013, AM J MED GENET B, V162, P604, DOI 10.1002/ajmg.b.32170
  67. Vita A, 2015, BIOL PSYCHIAT, V78, P403, DOI 10.1016/j.biopsych.2015.02.008
  68. Wierenga LM, 2014, NEUROIMAGE, V87, P120, DOI 10.1016/j.neuroimage.2013.11.010
  69. Wotruba D, 2014, FRONT BEHAV NEUROSCI, V8, DOI 10.3389/fnbeh.2014.00382
  70. Wotruba D, 2014, SCHIZOPHRENIA BULL, V40, P1095, DOI 10.1093/schbul/sbt161
  71. Yung AR, 1998, BRIT J PSYCHIAT, V172, P14, DOI 10.1192/S0007125000297602
  72. Zhao C, 2018, PROG NEURO-PSYCHOPH, V83, P27, DOI 10.1016/j.pnpbp.2017.12.017
  73. Ziermans TB, 2012, SCHIZOPHRENIA BULL, V38, P519, DOI 10.1093/schbul/sbq113