Association between pulmonary artery to aorta diameter ratio with pulmonary hypertension and outcomes in diffuse cystic lung diseases

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Citação
MEDICINE, v.100, n.25, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
To investigate the importance of pulmonary vascular measurements on computed tomography (CT) in predicting pulmonary hypertension (PH) and worse outcomes in diffuse cystic lung diseases (DCLDs). We conducted a cross-sectional study of patients with DCLDs. Patients underwent pulmonary function tests, a six-minute walk test (6MWT), chest CT, transthoracic echocardiography, and right heart catheterization. Pulmonary artery (PA) diameter and PA-ascending aorta ratio (PA-Ao ratio) were obtained from CT. Mean pulmonary artery pressure (mPAP) from right heart catheterization was correlated with tomographic, functional, and echocardiographic variables. The association between the PA-Ao ratio with outcomes was determined by Kaplan-Meier curves. Thirty-four patients were included (18 with pulmonary Langerhans cell histiocytosis and 16 with lymphangioleiomyomatosis, mean age 46 +/- 9 years). Forced expiratory volume in the first second and lung diffusing capacity for carbon monoxide were 47 +/- 20% and 38 +/- 21% predicted, respectively. PA diameter and PA-Ao ratio were 29 +/- 6 mm and 0.95 +/- 0.24, respectively. PA-Ao ratio > 1 occurred in 38.2% of patients. PA-Ao ratio was a good predictor of PH. mPAP correlated best with PA-Ao ratio, PA diameter, oxygen desaturation during six-minute walk test, and echocardiographic variables. Patients with PA-Ao ratio > 1 had greater mPAP, and a higher risk of death or lung transplantation (log-rank, P < .001) than those with PA-Ao ratio <= 1. The PA-Ao ratio measured on CT scan has a potential role as a non-invasive tool to predict the presence of PH and as a prognostic parameter in patients with DCLDs.
Palavras-chave
catheterization, lung cysts, lung function testing, pulmonary hypertension, tomography
Referências
  1. Baldi BG, 2017, J BRAS PNEUMOL, V43, P140, DOI [10.1590/s1806-37562016000000341, 10.1590/S1806-37562016000000341]
  2. BORG GAV, 1982, MED SCI SPORT EXER, V14, P377, DOI 10.1249/00005768-198205000-00012
  3. Choi JS, 2019, BMC PULM MED, V19, DOI 10.1186/s12890-019-0843-5
  4. Chung JH, 2017, EUR RADIOL, V27, P5127, DOI 10.1007/s00330-017-4936-3
  5. Cottin V, 2012, EUR RESPIR J, V40, P630, DOI 10.1183/09031936.00093111
  6. Courtwright AM, 2018, SARCOIDOSIS VASC DIF, V35, P206, DOI 10.36141/svdld.v35i3.6321
  7. Crapo RO, 2002, AM J RESP CRIT CARE, V166, P111, DOI 10.1164/rccm.166/1/111
  8. Dauriat G, 2006, TRANSPLANTATION, V81, P746, DOI 10.1097/01.tp.0000200304.64613.af
  9. Fartoukh M, 2000, AM J RESP CRIT CARE, V161, P216, DOI 10.1164/ajrccm.161.1.9807024
  10. Freitas CSG, 2017, ORPHANET J RARE DIS, V12, DOI 10.1186/s13023-017-0626-0
  11. Grosse A, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0201468
  12. Heiden GI, 2020, CHEST, V158, P2440, DOI 10.1016/j.chest.2020.05.609
  13. Hoette S, 2010, J BRAS PNEUMOL, V36, P795, DOI 10.1590/S1806-37132010000600018
  14. Johnson SR, 2010, EUR RESPIR J, V35, P14, DOI 10.1183/09031936.00076209
  15. Le Pavec J, 2012, CHEST, V142, P1150, DOI 10.1378/chest.11-2490
  16. MacIntyre N, 2005, EUR RESPIR J, V26, P720, DOI 10.1183/09031936.05.00034905
  17. Maron BA, 2020, LANCET RESP MED, V8, P873, DOI 10.1016/S2213-2600(20)30317-9
  18. McCormack FX, 2016, AM J RESP CRIT CARE, V194, P748, DOI 10.1164/rccm.201607-1384ST
  19. McCormack FX, 2012, AM J RESP CRIT CARE, V186, P1210, DOI 10.1164/rccm.201205-0848OE
  20. Miller MR, 2005, EUR RESPIR J, V26, P319, DOI 10.1183/09031936.05.00034805
  21. Neder JA, 1999, BRAZ J MED BIOL RES, V32, P729, DOI 10.1590/S0100-879X1999000600008
  22. Neder JA, 1999, BRAZ J MED BIOL RES, V32, P703, DOI 10.1590/S0100-879X1999000600006
  23. Obaidat B, 2020, RESP CARE, V65, P111, DOI 10.4187/respcare.07117
  24. Pereira Carlos Alberto de Castro, 2007, J. bras. pneumol., V33, P397, DOI 10.1590/S1806-37132007000400008
  25. Ratanawatkul P, 2020, ERJ OPEN RES, V6, DOI 10.1183/23120541.00232-2019
  26. Shaw B, 2020, SEMIN RESP CRIT CARE, V41, P269, DOI 10.1055/s-0039-1700996
  27. Shin S, 2016, EUR RESPIR J, V47, P1445, DOI 10.1183/13993003.01532-2015
  28. Shin S, 2014, RESP MED, V108, P1626, DOI 10.1016/j.rmed.2014.08.009
  29. Simonneau G, 2019, EUR RESPIR J, V53, DOI 10.1183/13993003.01913-2018
  30. Simonneau G, 2013, J AM COLL CARDIOL, V62, pD34, DOI [10.1016/j.jacc.2009.04.012, 10.1016/j.jacc.2013.10.029]
  31. Soares MR, 2011, J BRAS PNEUMOL, V37, P576, DOI 10.1590/S1806-37132011000500003
  32. Taveira-DaSilva AM, 2007, CHEST, V132, P1573, DOI 10.1378/chest.07-1205
  33. Vassallo R, 2017, THORAX, V72, P937, DOI 10.1136/thoraxjnl-2017-210125
  34. Wanger J, 2005, EUR RESPIR J, V26, P511, DOI 10.1183/09031936.05.00035005
  35. Wells JM, 2016, CHEST, V149, P1197, DOI 10.1378/chest.15-1504
  36. Wells JM, 2012, NEW ENGL J MED, V367, P913, DOI 10.1056/NEJMoa1203830
  37. Yagi M, 2017, RESPIROLOGY, V22, P1393, DOI 10.1111/resp.13066
  38. Zouk AN, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0229173