Reciprocal regulation of endothelial-mesenchymal transition by MAPK7 and EZH2 in intimal hyperplasia and coronary artery disease

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PORTFOLIO
Autores
VANCHIN, Byambasuren
SOL, Marloes
GJALTEMA, Rutger A. F.
BRINKER, Marja
KIERS, Bianca
HARMSEN, Martin C.
MOONEN, Jan-Renier A. J.
KRENNING, Guido
Citação
SCIENTIFIC REPORTS, v.11, n.1, article ID 17764, 16p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Endothelial-mesenchymal transition (EndMT) is a form of endothelial dysfunction wherein endothelial cells acquire a mesenchymal phenotype and lose endothelial functions, which contributes to the pathogenesis of intimal hyperplasia and atherosclerosis. The mitogen activated protein kinase 7 (MAPK7) inhibits EndMT and decreases the expression of the histone methyltransferase Enhancer-of-Zeste homologue 2 (EZH2), thereby maintaining endothelial quiescence. EZH2 is the catalytic subunit of the Polycomb Repressive Complex 2 that methylates lysine 27 on histone 3 (H3K27me3). It is elusive how the crosstalk between MAPK7 and EZH2 is regulated in the endothelium and if the balance between MAPK7 and EZH2 is disturbed in vascular disease. In human coronary artery disease, we assessed the expression levels of MAPK7 and EZH2 and found that with increasing intima/media thickness ratio, MAPK7 expression decreased, whereas EZH2 expression increased. In vitro, MAPK7 activation decreased EZH2 expression, whereas endothelial cells deficient of EZH2 had increased MAPK7 activity. MAPK7 activation results in increased expression of microRNA (miR)-101, a repressor of EZH2. This loss of EZH2 in turn results in the increased expression of the miR-200 family, culminating in decreased expression of the dual-specificity phosphatases 1 and 6 who may repress MAPK7 activity. Transfection of endothelial cells with miR-200 family members decreased the endothelial sensitivity to TGF beta 1-induced EndMT. In endothelial cells there is reciprocity between MAPK7 signaling and EZH2 expression and disturbances in this reciprocal signaling associate with the induction of EndMT and severity of human coronary artery disease.
Palavras-chave
Referências
  1. Adam PJ, 2000, J BIOL CHEM, V275, P37798, DOI 10.1074/jbc.M006323200
  2. Agarwal V, 2015, ELIFE, V4, DOI 10.7554/eLife.05005
  3. Aird WC, 2003, CRIT CARE MED, V31, pS221, DOI 10.1097/01.CCM.0000057847.32590.C1
  4. Boon RA, 2007, ARTERIOSCL THROM VAS, V27, P532, DOI 10.1161/01.ATV.0000256466.65450.ce
  5. Brondello JM, 1999, SCIENCE, V286, P2514, DOI 10.1126/science.286.5449.2514
  6. Burridge KA, 2010, AM J PHYSIOL-HEART C, V299, pH837, DOI 10.1152/ajpheart.00002.2010
  7. Cao WS, 2008, J EXP MED, V205, P1491, DOI 10.1084/jem.20071728
  8. Chen PY, 2015, J CLIN INVEST, V125, P4514, DOI 10.1172/JCI82719
  9. Chen PY, 2012, CELL REP, V2, P1684, DOI 10.1016/j.celrep.2012.10.021
  10. Chi JT, 2003, P NATL ACAD SCI USA, V100, P10623, DOI 10.1073/pnas.1434429100
  11. Correia ACP, 2016, J CELL SCI, V129, P569, DOI 10.1242/jcs.176248
  12. Dichgans M, 2014, STROKE, V45, P24, DOI 10.1161/STROKEAHA.113.002707
  13. Dreger H, 2012, HYPERTENSION, V60, P1176, DOI 10.1161/HYPERTENSIONAHA.112.191098
  14. Drew BA, 2012, BBA-REV CANCER, V1825, P37, DOI 10.1016/j.bbcan.2011.10.002
  15. Evrard SM, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms11853
  16. Feng B, 2016, DIABETES, V65, P768, DOI 10.2337/db15-1033
  17. Greissel A, 2016, CARDIOVASC PATHOL, V25, P79, DOI 10.1016/j.carpath.2015.11.001
  18. Hashimoto N, 2010, AM J RESP CELL MOL, V43, P161, DOI 10.1165/rcmb.2009-0031OC
  19. Jeffrey KL, 2007, NAT REV DRUG DISCOV, V6, P391, DOI 10.1038/nrd2289
  20. Jeong Y, 2014, J LEUKOCYTE BIOL, V95, P651, DOI 10.1189/jlb.1013565
  21. Kim M, 2012, J BIOL CHEM, V287, P40722, DOI 10.1074/jbc.M112.381509
  22. Komaravolu RK, 2015, CARDIOVASC RES, V105, P86, DOI 10.1093/cvr/cvu236
  23. Kondoh K, 2007, BBA-MOL CELL RES, V1773, P1227, DOI 10.1016/j.bbamcr.2006.12.002
  24. Kovacic JC, 2019, J AM COLL CARDIOL, V73, P190, DOI 10.1016/j.jacc.2018.09.089
  25. Krenning G, 2008, BIOMATERIALS, V29, P3703, DOI 10.1016/j.biomaterials.2008.05.034
  26. Kumar A, 2013, ARTERIOSCL THROM VAS, V33, P1936, DOI 10.1161/ATVBAHA.113.301765
  27. Lacorre DA, 2004, BLOOD, V103, P4164, DOI 10.1182/blood-2003-10-3537
  28. Lee ES, 2017, SCI REP-UK, V7, DOI 10.1038/srep42487
  29. Ling ZX, 2018, ONCOTARGETS THER, V11, P851, DOI 10.2147/OTT.S158173
  30. Liu RM, 2010, J BIOL CHEM, V285, P16239, DOI 10.1074/jbc.M110.111732
  31. Maddaluno L, 2013, NATURE, V498, P492, DOI 10.1038/nature12207
  32. Mahmoud MM, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-03532-z
  33. Mahmoud MM, 2016, CIRC RES, V119, P450, DOI 10.1161/CIRCRESAHA.116.308870
  34. Maleszewska M, 2016, ANGIOGENESIS, V19, P9, DOI 10.1007/s10456-015-9485-2
  35. MARKWALD RR, 1977, AM J ANAT, V148, P85, DOI 10.1002/aja.1001480108
  36. Medina-Leyte DJ, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10030938
  37. Molina G, 2009, NAT CHEM BIOL, V5, P680, DOI 10.1038/nchembio.190
  38. Moonen JRAJ, 2015, CARDIOVASC RES, V108, P377, DOI 10.1093/cvr/cvv175
  39. Moonen JRAJ, 2010, CARDIOVASC RES, V86, P506, DOI 10.1093/cvr/cvq012
  40. Le NT, 2014, J IMMUNOL, V193, P3803, DOI 10.4049/jimmunol.1400571
  41. Le NT, 2013, CIRCULATION, V127, P486, DOI 10.1161/CIRCULATIONAHA.112.116988
  42. Ohnesorge N, 2010, J BIOL CHEM, V285, P26199, DOI 10.1074/jbc.M110.103127
  43. Ohura N., 2003, J ATHEROSCLER THROMB, V10, P304, DOI [10.5551/jat.10.304, DOI 10.5551/JAT.10.304]
  44. Orekhov AN, 2010, ATHEROSCLEROSIS, V212, P436, DOI 10.1016/j.atherosclerosis.2010.07.009
  45. Paolicchi E, 2017, EPIGENOMES, V1, DOI 10.3390/epigenomes1030018
  46. Pawlyn C, 2017, BLOOD CANCER J, V7, DOI 10.1038/bcj.2017.27
  47. Price JF, 1999, EUR HEART J, V20, P344, DOI 10.1053/euhj.1998.1194
  48. Qiu FM, 2013, MUTAGENESIS, V28, P561, DOI 10.1093/mutage/get033
  49. Reddy ST, 2004, ARTERIOSCL THROM VAS, V24, P1676, DOI 10.1161/01.ATV.0000138342.94314.64
  50. Shen JZ, 2010, CIRC RES, V106, P902, DOI 10.1161/CIRCRESAHA.109.198069
  51. Smits M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016282
  52. Souilhol C, 2018, CARDIOVASC RES, V114, P565, DOI 10.1093/cvr/cvx253
  53. STARY HC, 1994, CIRCULATION, V89, P2462, DOI 10.1161/01.CIR.89.5.2462
  54. Tephly LA, 2007, AM J RESP CELL MOL, V37, P366, DOI 10.1165/rcmb.2006-0268OC
  55. Tesser-Gamba F, 2020, ANN DIAGN PATHOL, V46, DOI 10.1016/j.anndiagpath.2020.151482
  56. TEXON M, 1957, ARCH INTERN MED, V99, P418, DOI 10.1001/archinte.1957.00260030100010
  57. Vanchin B, 2019, J PATHOL, V247, P456, DOI 10.1002/path.5204
  58. Watkins H, 2006, NAT REV GENET, V7, P163, DOI 10.1038/nrg1805
  59. Wei-wei T., 2018, CHEMOTHERAPY, V7, P1, DOI [10.4172/2167-7700.1000252, DOI 10.4172/2167-7700.1000252]
  60. Wentzel JJ, 2012, CARDIOVASC RES, V96, P234, DOI 10.1093/cvr/cvs217
  61. Wilson PW., 1994, AM J HYPERTENS S 2, V7, p7S, DOI 10.1093/ajh/7.7.7s
  62. Yoon KA, 2010, J THORAC ONCOL, V5, P10, DOI 10.1097/JTO.0b013e3181c422d9
  63. Zeisberg EM, 2007, NAT MED, V13, P952, DOI 10.1038/nm1613
  64. Zeisberg EM, 2008, J AM SOC NEPHROL, V19, P2282, DOI 10.1681/ASN.2008050513
  65. Zhang HK, 2016, CANCER DISCOV, V6, P1006, DOI 10.1158/2159-8290.CD-16-0164
  66. Zhou T., 2018, CELL PHYSIOL BIOCHEM, V48, P880, DOI [10.1159/000491956, DOI 10.1159/000491956]