Evaluation of targets for Strongyloides genus specific molecular diagnosis in experimental strongyloidiasis

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
ACADEMIC PRESS INC ELSEVIER SCIENCE
Citação
EXPERIMENTAL PARASITOLOGY, v.230, article ID 108157, 6p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Strongyloides venezuelensis has been used in different experimental studies, such as those aimed at the evaluation of diagnostic techniques for human strongyloidiasis, mainly the molecular diagnosis. In this study, three regions (genus, 18S and 28S targets) of Strongyloides ribosomal DNA were evaluated for the molecular diagnosis of experimental strongyloidiasis. Rats were infected subcutaneously with 400 or 4000 S. venezuelensis infective larvae (400iL3 and 4000iL3), and kept for 35 days. Fecal samples were collected daily to count eggs per gram of feces (EPG) and to perform the polymerase chain reaction (PCR). Egg count started on the 5th day post-infection (pi) and ended on days 33 and 34 pi, in 400iL3 and 4000iL3 groups, respectively. Based in EPG, fecal samples were selected from days 2, 5, 8, 11, 15, 23 and 35 pi for DNA extraction; PCR (genus, 18S and 28S); and sequencing. The PCR-28S products showed higher values of identity (95-100%) in the database with the Strongyloides sequences. Therefore, it is possible to reinforce the application of PCR-28S in the diagnosis of experimental and human strongyloidiasis.
Palavras-chave
Experimental strongyloidiasis, Molecular diagnosis, Strongyloides rDNA
Referências
  1. Becker SL, 2015, ACTA TROP, V150, P210, DOI 10.1016/j.actatropica.2015.07.019
  2. Chaves LA, 2015, PARASITOLOGY, V142, P1715, DOI 10.1017/S0031182015001298
  3. Chiuso-Minicucci F, 2010, PARASITE IMMUNOL, V32, P74, DOI 10.1111/j.1365-3024.2009.01160.x
  4. Concha R, 2005, J CLIN GASTROENTEROL, V39, P203, DOI 10.1097/01.mcg.0000152779.68900.33
  5. de Paula FM, 2015, MEM I OSWALDO CRUZ, V110, P272, DOI 10.1590/0074-02760140371
  6. Dorris M, 2002, INT J PARASITOL, V32, P1507, DOI 10.1016/S0020-7519(02)00156-X
  7. FleitasID PE, 2020, PLOS NEGLECT TROP D, V14, DOI 10.1371/journal.pntd.0008184
  8. Kimura E, 1999, PARASITOLOGY, V119, P221, DOI 10.1017/S0031182099004631
  9. Kramme S, 2011, J MED MICROBIOL, V60, P454, DOI 10.1099/jmm.0.025338-0
  10. Levenhagen MA, 2014, ACTA TROP, V135, P33, DOI 10.1016/j.actatropica.2014.03.015
  11. Looss A., 1911, REC SCH MED, V4, P159
  12. Marques PD, 2016, J HELMINTHOL, V90, P422, DOI 10.1017/S0022149X15000528
  13. Marra NM, 2011, EXP PARASITOL, V127, P334, DOI 10.1016/j.exppara.2010.08.006
  14. Marra NM, 2010, MEM I OSWALDO CRUZ, V105, P57, DOI 10.1590/S0074-02762010000100008
  15. Nakai E. S., 2001, Revista Brasileira de Parasitologia Veterinaria, V10, P1
  16. Paula FM, 2013, REV INST MED TROP SP, V55, P141, DOI 10.1590/S0036-46652013000200015
  17. Repetto SA, 2013, ACTA TROP, V126, P110, DOI 10.1016/j.actatropica.2013.02.003
  18. SANGER F, 1977, P NATL ACAD SCI USA, V74, P5463, DOI 10.1073/pnas.74.12.5463
  19. Saugar JM, 2015, ACTA TROP, V142, P20, DOI 10.1016/j.actatropica.2014.10.020
  20. Sitta RB, 2014, PARASITOLOGY, V141, P716, DOI 10.1017/S0031182013002035
  21. Stensvold CR, 2011, TRENDS PARASITOL, V27, P53, DOI 10.1016/j.pt.2010.11.005
  22. ten Hove RJ, 2009, EUR J CLIN MICROBIOL, V28, P1045, DOI 10.1007/s10096-009-0745-1
  23. Toledo R, 2015, ADV PARASIT, V88, P165, DOI 10.1016/bs.apar.2015.02.005
  24. Vadlamudi Raja S, 2006, Clin Mol Allergy, V4, P8, DOI 10.1186/1476-7961-4-8
  25. Verweij JJ, 2009, T ROY SOC TROP MED H, V103, P342, DOI 10.1016/j.trstmh.2008.12.001
  26. WEISS JB, 1995, CLIN MICROBIOL REV, V8, P113, DOI 10.1128/CMR.8.1.113
  27. WHITLOCK H. V., 1950, JOUR HELMINTHOL, V24, P47, DOI 10.1017/S0022149X00019106
  28. Wong SSY, 2014, EXP BIOL MED, V239, P1443, DOI 10.1177/1535370214523880