The impact of atrial fibrillation and long-term oral anticoagulant use on all-cause and cardiovascular mortality: A 12-year evaluation of the prospective Brazilian Study of Stroke Mortality and Morbidity

Carregando...
Imagem de Miniatura
Citações na Scopus
13
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
SAGE PUBLICATIONS LTD
Citação
INTERNATIONAL JOURNAL OF STROKE, v.17, n.1, p.48-58, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Atrial fibrillation is a predictor of poor prognosis after stroke. Aims To evaluate atrial fibrillation and all-cause and cardiovascular mortality in a stroke cohort with low socioeconomic status, taking into consideration oral anticoagulant use during 12-year follow-up. Methods All-cause mortality was analyzed by Kaplan-Meier survival curve and Cox regression models to estimate hazard ratios and 95% confidence intervals (95% CI). For specific mortality causes, cumulative incidence functions were computed. A logit link function was used to calculate odds ratios (OR) with 95% CIs. Full models were adjusted by age, sex, oral anticoagulant use (as a time-dependent variable) and cardiovascular risk factors. Results Of 1121 ischemic stroke participants, 17.8% had atrial fibrillation. Overall, 654 deaths (58.3%) were observed. Survival rate was lower (median days, interquartile range-IQR) among those with atrial fibrillation (531, IQR: 46-2039) vs. non-atrial fibrillation (1808, IQR: 334-3301), p-log rank < 0.0001). Over 12-year follow-up, previous atrial fibrillation was associated with increased mortality: all-cause (multivariable hazard ratios, 1.82; 95% CI: 1.43-2.31) and cardiovascular mortality (multivariable OR, 2.07; 95% CI: 1.36-3.14), but not stroke mortality. In the same multivariable models, oral anticoagulant use was inversely associated with all-cause mortality (oral anticoagulant time-dependent effect: multivariable hazard ratios, 0.47; 95% CI: 0.30-0.50, p = 0.002) and stroke mortality (oral anticoagulant time-dependent effect >= 6 months: multivariable OR, 0.09; 95% CI: 0.01-0.65, p-value = 0.02), but not cardiovascular mortality. Conclusions Among individuals with low socioeconomic status, atrial fibrillation was an independent predictor of poor survival, increasing all-cause and cardiovascular mortality risk. Long-term oral anticoagulant use was associated with a markedly reduced risk of all-cause and stroke mortality.
Palavras-chave
Stroke epidemiology, stroke in developing countries, stroke prevention
Referências
  1. Andrew N, 2014, INT J STROKE, V9, P270, DOI 10.1111/ijs.12087
  2. Arnao V, 2015, INTERN EMERG MED, V10, P555, DOI 10.1007/s11739-015-1226-4
  3. Baturova MA, 2017, INT J CARDIOL, V232, P134, DOI 10.1016/j.ijcard.2017.01.040
  4. Benjamin EJ, 1998, CIRCULATION, V98, P946, DOI 10.1161/01.CIR.98.10.946
  5. Brant Luisa Campos Caldeira, 2017, Rev. bras. epidemiol., V20, P116, DOI 10.1590/1980-5497201700050010
  6. Castro HHG, 2017, CEREBROVASC DIS, V44, P232, DOI 10.1159/000479827
  7. Chin Y Y, 2018, Med J Malaysia, V73, P90
  8. Clarkesmith DE, 2017, THROMB RES, V153, P19, DOI 10.1016/j.thromres.2017.03.002
  9. COX DR, 1972, J R STAT SOC B, V34, P187
  10. de Abreu FG, 2018, SAO PAULO MED J, V136, P398, DOI 10.1590/1516-3180.2018.0129060818
  11. Feigin VL, 2014, LANCET, V383, P245, DOI 10.1016/S0140-6736(13)61953-4
  12. de Moraes ERFL, 2019, EUR J INTERN MED, V67, P36, DOI 10.1016/j.ejim.2019.04.024
  13. Fornari LS, 2007, J THROMB THROMBOLYS, V23, P65, DOI 10.1007/s11239-006-9012-9
  14. Goulart AC, 2010, INT J STROKE, V5, P284, DOI 10.1111/j.1747-4949.2010.00441.x
  15. Graw F, 2009, LIFETIME DATA ANAL, V15, P241, DOI 10.1007/s10985-008-9107-z
  16. GRAY RJ, 1988, ANN STAT, V16, P1141, DOI 10.1214/aos/1176350951
  17. Healey JS, 2016, LANCET, V388, P1161, DOI 10.1016/S0140-6736(16)30968-0
  18. Heneghan CJ, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD003839.pub3
  19. KAPLAN EL, 1958, J AM STAT ASSOC, V53, P457, DOI 10.2307/2281868
  20. Klein JP, 2008, COMPUT METH PROG BIO, V89, P289, DOI 10.1016/j.cmpb.2007.11.017
  21. Klein JP, 2005, BIOMETRICS, V61, P223, DOI 10.1111/j.0006-341X.2005.031209.x
  22. Lamassa M, 2001, STROKE, V32, P392, DOI 10.1161/01.STR.32.2.392
  23. Levesque LE, 2010, BMJ-BRIT MED J, V340, pb5087, DOI 10.1136/BMJ.B5087
  24. Lin S, 2011, CEREBROVASC DIS, V31, P419, DOI 10.1159/000323221
  25. Link MS, 2017, CIRC-ARRHYTHMIA ELEC, V10, DOI 10.1161/CIRCEP.116.004267
  26. Lotufo PA, 2007, LANCET NEUROL, V6, P387, DOI 10.1016/S1474-4422(07)70091-1
  27. Marini C, 2005, STROKE, V36, P1115, DOI 10.1161/01.STR.0000166053.83476.4a
  28. Mozaffarian D, 2015, CIRCULATION, V131, pE29, DOI 10.1161/CIR.0000000000000152
  29. Pritchett RV, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0232484
  30. Rivera-Caravaca JM, 2017, THROMB HAEMOSTASIS, V117, P1448, DOI 10.1160/TH16-12-0961
  31. Schnabel RB, 2015, LANCET, V386, P154, DOI 10.1016/S0140-6736(14)61774-8
  32. Smith DE, 2010, BMC CARDIOVASC DISOR, V10, DOI 10.1186/1471-2261-10-21
  33. Suissa S, 2008, AM J EPIDEMIOL, V167, P492, DOI 10.1093/aje/kwm324
  34. World Health Organisation, 2006, WHO STEPS STROK MAN