Antioxidant Properties and Cytoprotective Effect of Pistacia lentiscus L. Seed Oil against 7 beta-Hydroxycholesterol-Induced Toxicity in C2C12 Myoblasts: Reduction in Oxidative Stress, Mitochondrial and Peroxisomal Dysfunctions and Attenuation of Cell Death

Carregando...
Imagem de Miniatura
Citações na Scopus
13
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
GHZAIEL, Imen
ZARROUK, Amira
NURY, Thomas
LIBERGOLI, Michela
FLORIO, Francesca
HAMMOUDA, Souha
MENETRIER, Franck
AVOSCAN, Laure
YAMMINE, Aline
SAMADI, Mohammad
Citação
ANTIOXIDANTS, v.10, n.11, article ID 1772, 37p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aging is characterized by a progressive increase in oxidative stress, which favors lipid peroxidation and the formation of cholesterol oxide derivatives, including 7 beta-hydroxycholesterol (7 beta-OHC). This oxysterol, which is known to trigger oxidative stress, inflammation, and cell death, could contribute to the aging process and age-related diseases, such as sarcopenia. Identifying molecules or mixtures of molecules preventing the toxicity of 7 beta-OHC is therefore an important issue. This study consists of determining the chemical composition of Tunisian Pistacia lentiscus L. seed oil (PLSO) used in the Tunisian diet and evaluating its ability to counteract the cytotoxic effects induced by 7 beta-OHC in murine C2C12 myoblasts. The effects of 7 beta-OHC (50 mu M; 24 h), associated or not with PLSO, were studied on cell viability, oxidative stress, and on mitochondrial and peroxisomal damages induction. alpha-Tocopherol (400 mu M) was used as the positive control for cytoprotection. Our data show that PLSO is rich in bioactive compounds; it contains polyunsaturated fatty acids, and several nutrients with antioxidant properties: phytosterols, alpha-tocopherol, carotenoids, flavonoids, and phenolic compounds. When associated with PLSO (100 mu g/mL), the 7 beta-OHC-induced cytotoxic effects were strongly attenuated. The cytoprotection was in the range of those observed with alpha-tocopherol. This cytoprotective effect was characterized by prevention of cell death and organelle dysfunction (restoration of cell adhesion, cell viability, and plasma membrane integrity; prevention of mitochondrial and peroxisomal damage) and attenuation of oxidative stress (reduction in reactive oxygen species overproduction in whole cells and at the mitochondrial level; decrease in lipid and protein oxidation products formation; and normalization of antioxidant enzyme activities: glutathione peroxidase (GPx) and superoxide dismutase (SOD)). These results provide evidence that PLSO has similar antioxidant properties than alpha-tocopherol used at high concentration and contains a mixture of molecules capable to attenuate 7 beta-OHC-induced cytotoxic effects in C2C12 myoblasts. These data reinforce the interest in edible oils associated with the Mediterranean diet, such as PLSO, in the prevention of age-related diseases, such as sarcopenia.
Palavras-chave
aging, 7 beta-hydroxycholesterol, mitochondria, oxidative stress, peroxisome, <p>Pistacia lentiscus L.& nbsp, seed oil</p>, seed oil, sarcopenia
Referências
  1. Accad M, 1998, CURR BIOL, V8, pR601, DOI 10.1016/S0960-9822(98)70386-0
  2. Aguilera C. M., 2000, Recent Research Developments in Lipids, V4, P369
  3. Amery L, 2000, J LIPID RES, V41, P1752
  4. Ammari M, 2018, BRAIN RES BULL, V140, P140, DOI 10.1016/j.brainresbull.2018.04.014
  5. Anderson A, 2020, REDOX BIOL, V29, DOI 10.1016/j.redox.2019.101380
  6. Baarine M, 2012, NEUROSCIENCE, V213, P1, DOI 10.1016/j.neuroscience.2012.03.058
  7. Baarine M, 2009, J NEUROCHEM, V111, P119, DOI 10.1111/j.1471-4159.2009.06311.x
  8. Badreddine A, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18102220
  9. Bassene E., 2012, INITIATION RECHERCHE
  10. BEAUCHAM.C, 1971, ANAL BIOCHEM, V44, P276, DOI 10.1016/0003-2697(71)90370-8
  11. Ben Khedir S, 2016, BIOTECH HISTOCHEM, V91, P480, DOI 10.1080/10520295.2016.1232840
  12. JONES KH, 1985, J HISTOCHEM CYTOCHEM, V33, P77, DOI 10.1177/33.1.2578146
  13. Kang JS, 2015, INT J MOL MED, V35, P453, DOI 10.3892/ijmm.2014.2028
  14. Kang P, 2020, BRIT J NUTR, V123, P859, DOI 10.1017/S0007114519002393
  15. KELLEY DE, 1990, J CLIN INVEST, V86, P1999, DOI 10.1172/JCI114935
  16. Kemp S, 2011, BRIT J PHARMACOL, V164, P1753, DOI 10.1111/j.1476-5381.2011.01435.x
  17. Kihara A, 2012, J BIOCHEM, V152, P387, DOI 10.1093/jb/mvs105
  18. Kim DO, 2003, J AGR FOOD CHEM, V51, P6509, DOI 10.1021/jf0343074
  19. Kirchengast S, 2009, ANTHROPOL ANZ, V67, P139, DOI 10.1127/0003-5548/2009/0018
  20. Kitakaze T, 2015, J NUTR SCI VITAMINOL, V61, P481, DOI 10.3177/jnsv.61.481
  21. Klionsky DJ, 2012, AUTOPHAGY, V8, P445, DOI 10.4161/auto.19496
  22. Pedruzzi E, 2004, MOL CELL BIOL, V24, P10703, DOI 10.1128/MCB.24.24.10703-10717.2004
  23. Knapowski J, 2002, J PHYSIOL PHARMACOL, V53, P135
  24. Kunzelmann K, 2016, CELL MOL LIFE SCI, V73, P2387, DOI 10.1007/s00018-016-2208-z
  25. Le Floc'h E., 1983, CONTRIBUTION ETUDE
  26. Lee JH, 2009, LIFE SCI, V84, P415, DOI 10.1016/j.lfs.2009.01.004
  27. Lemaire-Ewing S, 2005, CELL BIOL TOXICOL, V21, P97, DOI 10.1007/s10565-005-0141-2
  28. Leporini L, 2017, J BIOL REG HOMEOS AG, V31, P589
  29. Li J, 2020, FRONT CELL DEV BIOL, V8, DOI 10.3389/fcell.2020.541260
  30. Li Z, 2021, BIOGERONTOLOGY, V22, P165, DOI 10.1007/s10522-021-09910-5
  31. Liao PC, 2018, J AGR FOOD CHEM, V66, P10748, DOI 10.1021/acs.jafc.8b04555
  32. Lismont C, 2015, FRONT CELL DEV BIOL, V3, DOI 10.3389/fcell.2015.00035
  33. Pereira AF, 2013, ACTA MEDICA PORT, V26, P51
  34. Liu Y, 1997, ARTERIOSCL THROM VAS, V17, P317, DOI 10.1161/01.ATV.17.2.317
  35. LIZARD G, 1995, CYTOMETRY, V21, P275, DOI 10.1002/cyto.990210308
  36. Mankhong S, 2020, CELLS-BASEL, V9, DOI 10.3390/cells9061385
  37. Marquez DX, 2011, J PHYS ACT HEALTH, V8, pS161, DOI 10.1123/jpah.8.s2.s161
  38. Matos LC, 2007, FOOD CHEM, V102, P976, DOI 10.1016/j.foodchem.2006.04.026
  39. Mejri M., 2020, OXIDATIVE STRESS DIE, P143
  40. Melton LJ, 2000, J AM GERIATR SOC, V48, P625
  41. Meydani M., 2019, VITAMIN E HUMAN HLTH, P141
  42. Mezni F, 2016, PHARM BIOL, V54, P747, DOI 10.3109/13880209.2015.1079222
  43. Milia E, 2021, ANTIBIOTICS-BASEL, V10, DOI 10.3390/antibiotics10040425
  44. Periasamy M, 2017, DIABETES METAB J, V41, P327, DOI 10.4093/dmj.2017.41.5.327
  45. Mitic T, 2013, BIOCHIMIE, V95, P548, DOI 10.1016/j.biochi.2012.08.007
  46. MOILANEN T, 1981, CLIN CHIM ACTA, V114, P111, DOI 10.1016/0009-8981(81)90235-7
  47. Molyneux P., 2004, SONGKLANAKARIN J SCI, V26, P211, DOI 10.1287/isre.6.2.144
  48. MORRISON WR, 1964, J LIPID RES, V5, P600
  49. Musaro A, 2010, CURR OPIN CLIN NUTR, V13, P236, DOI 10.1097/MCO.0b013e3283368188
  50. Muscat GEO, 2002, J BIOL CHEM, V277, P40722, DOI 10.1074/jbc.M206681200
  51. Mutemberezi V, 2016, PROG LIPID RES, V64, P152, DOI 10.1016/j.plipres.2016.09.002
  52. Nishi H, 2019, NUTRIENTS, V11, DOI 10.3390/nu11071664
  53. Nury T, 2021, AGEING RES REV, V68, DOI 10.1016/j.arr.2021.101324
  54. Nury T, 2021, BRIT J PHARMACOL, V178, P3115, DOI 10.1111/bph.15173
  55. Pistollato F, 2015, FOOD CHEM TOXICOL, V75, P58, DOI 10.1016/j.fct.2014.11.004
  56. Nury T, 2018, BIOCHIMIE, V153, P181, DOI 10.1016/j.biochi.2018.07.009
  57. Nury T, 2015, STEROIDS, V99, P194, DOI 10.1016/j.steroids.2015.02.003
  58. Nury T, 2014, BIOCHEM BIOPH RES CO, V446, P714, DOI 10.1016/j.bbrc.2013.11.081
  59. OLIVER CN, 1987, J BIOL CHEM, V262, P5488
  60. Pascual-Ahuir A, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/9860841
  61. Patkova J, 2014, CELL PHYSIOL BIOCHEM, V33, P1439, DOI 10.1159/000358709
  62. Poli G, 2013, REDOX BIOL, V1, P125, DOI 10.1016/j.redox.2012.12.001
  63. Powers SK, 2011, J PHYSIOL-LONDON, V589, P2129, DOI 10.1113/jphysiol.2010.201327
  64. Ragot K, 2013, BIOCHEM PHARMACOL, V86, P67, DOI 10.1016/j.bcp.2013.02.028
  65. Rathnayake N, 2018, J PHYSIOL ANTHROPOL, V37, DOI 10.1186/s40101-018-0179-5
  66. Rimbach G, 2002, P NUTR SOC, V61, P415, DOI 10.1079/PNS2002183
  67. ROSENBERG IH, 1995, ANN INTERN MED, V123, P727, DOI 10.7326/0003-4819-123-9-199511010-00014
  68. Ben Khedir S, 2017, PHARM BIOL, V55, P1407, DOI 10.1080/13880209.2016.1233569
  69. Rossi R, 2013, RES VET SCI, V94, P372, DOI 10.1016/j.rvsc.2012.08.005
  70. ROTHE G, 1990, J LEUKOCYTE BIOL, V47, P440, DOI 10.1002/jlb.47.5.440
  71. Rufini A, 2013, ONCOGENE, V32, P5129, DOI 10.1038/onc.2012.640
  72. Saidi SA, 2017, ARCH PHYSIOL BIOCHEM, V123, P199, DOI 10.1080/13813455.2017.1302961
  73. Samadi A, 2019, J ENDOCRINOL INVEST, V42, P7, DOI 10.1007/s40618-018-0873-5
  74. Samadi A, 2021, CURR MED CHEM, V28, P110, DOI 10.2174/0929867327666200316142659
  75. Savary S, 2012, CURR DRUG METAB, V13, P1358, DOI 10.2174/138920012803762729
  76. Seo E, 2019, AGING CELL, V18, DOI 10.1111/acel.12895
  77. Sghaier R, 2019, J STEROID BIOCHEM, V194, DOI 10.1016/j.jsbmb.2019.105432
  78. Simons K, 2000, SCIENCE, V290, P1721, DOI 10.1126/science.290.5497.1721
  79. Bezine M, 2018, BIOCHIMIE, V153, P46, DOI 10.1016/j.biochi.2018.04.013
  80. SINGLETON V. L., 1965, AMER J ENOL VITICULT, V16, P144
  81. Smith TAD, 1998, BRIT J BIOMED SCI, V55, P268
  82. Sottero B, 2019, FREE RADICAL BIO MED, V144, P55, DOI 10.1016/j.freeradbiomed.2019.05.026
  83. Szentesi P, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/4617801
  84. Tawbeh A, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22116093
  85. Testa G, 2018, BIOCHIMIE, V153, P220, DOI 10.1016/j.biochi.2018.06.006
  86. Thomson DM, 2009, ACTA PHYSIOL, V196, P147, DOI 10.1111/j.1748-1716.2009.01973.x
  87. Titorenko VI, 2011, TRAFFIC, V12, P252, DOI 10.1111/j.1600-0854.2010.01144.x
  88. Trabelsi H, 2012, EUR J LIPID SCI TECH, V114, P968, DOI 10.1002/ejlt.201100146
  89. Troen BR, 2003, MT SINAI J MED, V70, P3
  90. Blondelle J, 2017, METHODS MOL BIOL, V1668, P39, DOI 10.1007/978-1-4939-7283-8_4
  91. Trompier D, 2014, BIOCHIMIE, V98, P102, DOI 10.1016/j.biochi.2013.09.009
  92. Unger RH, 2002, BBA-MOL CELL BIOL L, V1585, P202, DOI 10.1016/S1388-1981(02)00342-6
  93. Valko M, 2007, INT J BIOCHEM CELL B, V39, P44, DOI 10.1016/j.biocel.2006.07.001
  94. Vejux A, 2020, BIOCHEM PHARMACOL, V173, DOI 10.1016/j.bcp.2019.113648
  95. Vergallo C, 2020, NANOMATERIALS-BASEL, V10, DOI 10.3390/nano10061232
  96. Wanders RJA, 2014, BIOCHIMIE, V98, P36, DOI 10.1016/j.biochi.2013.08.022
  97. Wong HS, 2016, J FUNCT FOODS, V23, P253, DOI 10.1016/j.jff.2016.02.045
  98. Yammine A, 2020, CELLS-BASEL, V9, DOI 10.3390/cells9112346
  99. Yammine A, 2020, MOLECULES, V25, DOI 10.3390/molecules25102296
  100. YEH CJG, 1981, J IMMUNOL METHODS, V43, P269, DOI 10.1016/0022-1759(81)90174-5
  101. Bourdon E, 2000, ARTERIOSCL THROM VAS, V20, P2643, DOI 10.1161/01.ATV.20.12.2643
  102. YOSHIOKA T, 1979, AM J OBSTET GYNECOL, V135, P372, DOI 10.1016/0002-9378(79)90708-7
  103. Zarrouk A, 2018, BIOCHIMIE, V153, P210, DOI 10.1016/j.biochi.2018.06.027
  104. Zarrouk A, 2014, AGEING RES REV, V18, P148, DOI 10.1016/j.arr.2014.09.006
  105. Zarrouk A, 2012, OXID MED CELL LONGEV, V2012, DOI 10.1155/2012/623257
  106. Zarroulc A, 2019, CURR PHARM DESIGN, V25, P1791, DOI 10.2174/1381612825666190705192902
  107. Zerbinati C, 2017, FREE RADICAL BIO MED, V111, P151, DOI 10.1016/j.freeradbiomed.2017.04.013
  108. Bouyahya A., 2018, J MAT ENV SCI, V9, P1518
  109. Brahmi F, 2020, IND CROP PROD, V151, DOI 10.1016/j.indcrop.2020.112456
  110. Brahmi F, 2019, CRIT REV FOOD SCI, V59, P3179, DOI 10.1080/10408398.2018.1491828
  111. Cecatto C, 2020, TOXICOL IN VITRO, V62, DOI 10.1016/j.tiv.2019.104665
  112. Charef M, 2008, J AM OIL CHEM SOC, V85, P921, DOI 10.1007/s11746-008-1283-1
  113. Chen Y., 2014, THESIS U MANITOBA
  114. Choi Yung Hyun, 2015, [Journal of Korean Medicine for Obesity Research, 한방비만학회지], V15, P93
  115. Crowe AV, 2007, NEPHROL DIAL TRANSPL, V22, P1177, DOI 10.1093/ndt/gfl721
  116. Cui L, 2020, FREE RADICAL BIO MED, V161, P23, DOI 10.1016/j.freeradbiomed.2020.09.028
  117. Daoued KB, 2016, RIV ITAL SOSTANZE GR, V93, P31
  118. Debbabi M, 2017, CHEM PHYS LIPIDS, V207, P151, DOI 10.1016/j.chemphyslip.2017.04.002
  119. Debbabi M, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17121973
  120. Deshmukh AS, 2016, PROTEOMES, V4, DOI 10.3390/proteomes4010006
  121. Dhibi M, 2014, J FOOD SCI TECH MYS, V51, P1442, DOI 10.1007/s13197-012-0664-5
  122. Dhifi W., 2013, African Journal of Agricultural Research, V8, P1395
  123. DINIS TCP, 1994, ARCH BIOCHEM BIOPHYS, V315, P161, DOI 10.1006/abbi.1994.1485
  124. ESTERBAUER H, 1989, FREE RADICAL RES COM, V6, P67, DOI 10.3109/10715768909073429
  125. Evans PL, 2019, NUTRIENTS, V11, DOI 10.3390/nu11102432
  126. Fazeli-Nasab B., 2014, International Journal of Advanced Biological and Biomedical Research, V2, P2155
  127. FLOHE L, 1984, METHOD ENZYMOL, V105, P114
  128. FOLCH J, 1957, J BIOL CHEM, V226, P497
  129. French MA, 2002, ASIA PAC J CLIN NUTR, V11, pS401, DOI 10.1046/j.1440-6047.11.s.7.3.x
  130. Fujita T, 2002, METABOLISM, V51, P737, DOI 10.1053/meta.2002.32803
  131. Fulle S, 2004, EXP GERONTOL, V39, P17, DOI 10.1016/j.exger.2003.09.012
  132. Gammone MA, 2015, FOOD NUTR RES, V59, DOI 10.3402/fnr.v59.26762
  133. Gaussen H., 1982, PRECIS BOT 2 VEGETAU, V2nd ed., P307
  134. Gimeno E, 2002, FOOD CHEM, V78, P207, DOI 10.1016/S0308-8146(01)00399-5
  135. Gomes MJ, 2017, ONCOTARGET, V8, P20428, DOI 10.18632/oncotarget.14670
  136. Goodpaster BH, 2006, J GERONTOL A-BIOL, V61, P1059, DOI 10.1093/gerona/61.10.1059
  137. Gransee HM, 2012, COMPR PHYSIOL, V2, P1441, DOI 10.1002/cphy.c110050
  138. Gray E, 2014, MULT SCLER J, V20, P651, DOI 10.1177/1352458513505691
  139. Gupta R, 2011, J DIABETES, V3, P29, DOI 10.1111/j.1753-0407.2010.00107.x
  140. Gustafsson T, 2021, FRONT GENET, V12, DOI 10.3389/fgene.2021.688526
  141. Hanley K, 2000, J INVEST DERMATOL, V114, P545, DOI 10.1046/j.1523-1747.2000.00895.x
  142. Hwang SL, 2008, BIOCHEM BIOPH RES CO, V377, P1253, DOI 10.1016/j.bbrc.2008.10.136
  143. Iuliano L, 2011, CHEM PHYS LIPIDS, V164, P457, DOI 10.1016/j.chemphyslip.2011.06.006
  144. Jakobsson A, 2006, PROG LIPID RES, V45, P237, DOI 10.1016/j.plipres.2006.01.004
  145. Jamadagni P, 2019, NEUROTOXICOLOGY, V75, P14, DOI 10.1016/j.neuro.2019.08.007
  146. Jandacek RJ, 2017, HEALTHCARE-BASEL, V5, DOI 10.3390/healthcare5020025