Adult human neurogenesis: early studies clarify recent controversies and go further

Carregando...
Imagem de Miniatura
Citações na Scopus
12
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER/PLENUM PUBLISHERS
Autores
HOSHINO, Hillary Sayuri Ramires
ORTEGA, Natalia Camargo
SANTOS, Bruna Grazielle Silva dos
Citação
METABOLIC BRAIN DISEASE, v.37, n.1, p.153-172, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Evidence on adult mammalian neurogenesis and scarce studies with human brains led to the idea that adult human neurogenesis occurs in the subgranular zone (SGZ) of the dentate gyrus and in the subventricular zone (SVZ). However, findings published from 2018 rekindled controversies on adult human SGZ neurogenesis. We systematically reviewed studies published during the first decade of characterization of adult human neurogenesis (1994-2004) - when the two-neurogenic-niche concept in humans was consolidated - and compared with further studies. The synthesis of both periods is that adult human neurogenesis occurs in an intensity ranging from practically zero to a level comparable to adult mammalian neurogenesis in general, which is the prevailing conclusion. Nonetheless, Bernier and colleagues showed in 2000 intriguing indications of adult human neurogenesis in a broad area including the limbic system. Likewise, we later showed evidence that limbic and hypothalamic structures surrounding the circumventricular organs form a continuous zone expressing neurogenesis markers encompassing the SGZ and SVZ. The conclusion is that publications from 2018 on adult human neurogenesis did not bring novel findings on location of neurogenic niches. Rather, we expect that the search of neurogenesis beyond the canonical adult mammalian neurogenic niches will confirm our indications that adult human neurogenesis is orchestrated in a broad brain area. We predict that this approach may, for example, clarify that human hippocampal neurogenesis occurs mostly in the CA1-subiculum zone and that the previously identified human rostral migratory stream arising from the SVZ is indeed the column of the fornix expressing neurogenesis markers.
Palavras-chave
Neural stem cells, Hypothalamus, Circumventricular organs, Limbic system, Neuronal plasticity, hippocampus
Referências
  1. Akiyama Y, 2001, EXP NEUROL, V167, P27, DOI 10.1006/exnr.2000.7539
  2. ALTMAN J, 1963, ANAT REC, V145, P573, DOI 10.1002/ar.1091450409
  3. ALTMAN J, 1962, SCIENCE, V135, P1127, DOI 10.1126/science.135.3509.1127
  4. Arsenijevic Y, 2001, EXP NEUROL, V170, P48, DOI 10.1006/exnr.2001.7691
  5. Bedard A, 2004, DEV BRAIN RES, V151, P159, DOI 10.1016/j.devbrainres.2004.03.021
  6. Bernier PJ, 1998, J NEUROSCI, V18, P2486
  7. Bernier PJ, 2000, NEUROSCI RES, V37, P67, DOI 10.1016/S0168-0102(00)00102-4
  8. Blumcke I, 2001, HIPPOCAMPUS, V11, P311, DOI 10.1002/hipo.1045
  9. Boldrini M, 2018, CELL STEM CELL, V22, P589, DOI 10.1016/j.stem.2018.03.015
  10. Curtis MA, 2003, P NATL ACAD SCI USA, V100, P9023, DOI 10.1073/pnas.1532244100
  11. Curtis MA, 2007, SCIENCE, V315, P1243, DOI 10.1126/science.1136281
  12. Emara M, 2014, INT J ONCOL, V44, P514, DOI 10.3892/ijo.2013.2186
  13. Eriksson PS, 1998, NAT MED, V4, P1313, DOI 10.1038/3305
  14. Giordano-Santini R, 2016, SEMIN CELL DEV BIOL, V60, P146, DOI 10.1016/j.semcdb.2016.06.019
  15. Gould E, 1999, SCIENCE, V286, P548, DOI 10.1126/science.286.5439.548
  16. Hagihara H, 2019, MOL BRAIN, V12, DOI 10.1186/s13041-019-0522-8
  17. Haines B, 2013, NEUROSCI LETT, V549, P3, DOI 10.1016/j.neulet.2013.04.039
  18. Jin KL, 2004, P NATL ACAD SCI USA, V101, P343, DOI 10.1073/pnas.2634794100
  19. Johansson CB, 1999, EXP CELL RES, V253, P733, DOI 10.1006/excr.1999.4678
  20. Kempermann G, 2013, SCIENCE, V340, P1180, DOI 10.1126/science.1240681
  21. Kim B, 2015, ANN NEUROL, V78, pS174
  22. Kim K, 2019, MECH AGEING DEV, V177, P74, DOI 10.1016/j.mad.2018.04.008
  23. KIRSCHENBAUM B, 1994, CEREB CORTEX, V4, P576, DOI 10.1093/cercor/4.6.576
  24. Kukekov VG, 1999, EXP NEUROL, V156, P333, DOI 10.1006/exnr.1999.7028
  25. Kumar Ashutosh, 2019, Innov Clin Neurosci, V16, P30
  26. La Rosa C, 2020, ELIFE, V9, DOI 10.7554/eLife.55456
  27. La Rosa C, 2020, FRONT NEUROSCI-SWITZ, V14, DOI 10.3389/fnins.2020.00075
  28. Liu ZP, 2003, J COMP NEUROL, V459, P368, DOI 10.1002/cne.10664
  29. Loddenkemper T, 2017, NOGUEIRA AB
  30. Lu P, 2012, CELL, V150, P1264, DOI 10.1016/j.cell.2012.08.020
  31. Marichal N, 2009, J NEUROSCI, V29, P10010, DOI 10.1523/JNEUROSCI.6183-08.2009
  32. Ming GL, 2011, NEURON, V70, P687, DOI 10.1016/j.neuron.2011.05.001
  33. Moreno-Jimenez EP, 2019, NAT MED, V25, P554, DOI 10.1038/s41591-019-0375-9
  34. Nogueira AB, 2014, NEUROSURGERY, V75, P678, DOI 10.1227/NEU.0000000000000512
  35. Nogueira AB, 2021, ARCH NEUROSCI, V8, DOI 10.5812/ans.108154
  36. Nogueira AB, 2018, NEUROSURGERY, V83, pE133, DOI 10.1093/neuros/nyy252
  37. Nogueira AB, 2017, FRONT NEUROL, V8, DOI 10.3389/fneur.2017.00637
  38. Nogueira AB, 2017, J TRANSL MED, V15, DOI 10.1186/s12967-017-1272-y
  39. Nogueira AB, 2017, NEUROSURGERY, V81, pE16, DOI 10.1093/neuros/nyx202
  40. Nogueira AB, 2014, J TRANSL MED, V12, DOI 10.1186/1479-5876-12-75
  41. Nunes MC, 2003, NAT MED, V9, P439, DOI 10.1038/nm837
  42. Pagano SF, 2000, STEM CELLS, V18, P295, DOI 10.1634/stemcells.18-4-295
  43. Palmer TD, 2001, NATURE, V411, P42, DOI 10.1038/35075141
  44. Pincus D W, 1997, Clin Neurosurg, V44, P17
  45. Pincus DW, 1998, ANN NEUROL, V43, P576, DOI 10.1002/ana.410430505
  46. Piumatti M, 2018, J NEUROSCI, V38, P826, DOI 10.1523/JNEUROSCI.1781-17.2017
  47. Popa-Wagner A, 2014, FRONT CELL NEUROSCI, V8, DOI 10.3389/fncel.2014.00347
  48. Rakic P, 2002, NAT REV NEUROSCI, V3, P65, DOI 10.1038/nrn700
  49. Roy NS, 2000, J NEUROSCI RES, V59, P321, DOI 10.1002/(SICI)1097-4547(20000201)59:3<321::AID-JNR5>3.0.CO;2-9
  50. Roy NS, 2000, NAT MED, V6, P271
  51. Sanai N, 2004, NATURE, V427, P740, DOI 10.1038/nature02301
  52. Sanai N, 2011, NATURE, V478, P382, DOI 10.1038/nature10487
  53. Sandu RE, 2015, NEURAL REGEN RES, V10, P1349, DOI 10.4103/1673-5374.165208
  54. Schelshorn DW, 2009, J CEREBR BLOOD F MET, V29, P585, DOI 10.1038/jcbfm.2008.152
  55. Seki T, 2020, FRONT NEUROSCI-SWITZ, V14, DOI 10.3389/fnins.2020.00839
  56. Sorrells SF, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-10765-1
  57. Sorrells SF, 2018, NATURE, V555, P377, DOI 10.1038/nature25975
  58. Spalding KL, 2013, CELL, V153, P1219, DOI 10.1016/j.cell.2013.05.002
  59. Tobin MK, 2019, CELL STEM CELL, V24, P974, DOI 10.1016/j.stem.2019.05.003
  60. Wang CM, 2011, CELL RES, V21, P1534, DOI 10.1038/cr.2011.83
  61. Wen HT, 1999, NEUROSURGERY, V45, P549, DOI 10.1097/00006123-199909000-00028
  62. Westerlund U, 2003, EXP CELL RES, V289, P378, DOI 10.1016/S0014-4827(03)00291-X