A meta-analysis of deep brain structural shape and asymmetry abnormalities in 2,833 individuals with schizophrenia compared with 3,929 healthy volunteers via the ENIGMA Consortium

Carregando...
Imagem de Miniatura
Citações na Scopus
26
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
GUTMAN, Boris A.
ERP, Theo G. M. van
ALPERT, Kathryn
CHING, Christopher R. K.
ISAEV, Dmitry
RAGOTHAMAN, Anjani
JAHANSHAD, Neda
SAREMI, Arvin
ZAVALIANGOS-PETROPULU, Artemis
GLAHN, David C.
Citação
HUMAN BRAIN MAPPING, v.43, n.1, Special Issue, p.352-372, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Schizophrenia is associated with widespread alterations in subcortical brain structure. While analytic methods have enabled more detailed morphometric characterization, findings are often equivocal. In this meta-analysis, we employed the harmonized ENIGMA shape analysis protocols to collaboratively investigate subcortical brain structure shape differences between individuals with schizophrenia and healthy control participants. The study analyzed data from 2,833 individuals with schizophrenia and 3,929 healthy control participants contributed by 21 worldwide research groups participating in the ENIGMA Schizophrenia Working Group. Harmonized shape analysis protocols were applied to each site's data independently for bilateral hippocampus, amygdala, caudate, accumbens, putamen, pallidum, and thalamus obtained from T1-weighted structural MRI scans. Mass univariate meta-analyses revealed more-concave-than-convex shape differences in the hippocampus, amygdala, accumbens, and thalamus in individuals with schizophrenia compared with control participants, more-convex-than-concave shape differences in the putamen and pallidum, and both concave and convex shape differences in the caudate. Patterns of exaggerated asymmetry were observed across the hippocampus, amygdala, and thalamus in individuals with schizophrenia compared to control participants, while diminished asymmetry encompassed ventral striatum and ventral and dorsal thalamus. Our analyses also revealed that higher chlorpromazine dose equivalents and increased positive symptom levels were associated with patterns of contiguous convex shape differences across multiple subcortical structures. Findings from our shape meta-analysis suggest that common neurobiological mechanisms may contribute to gray matter reduction across multiple subcortical regions, thus enhancing our understanding of the nature of network disorganization in schizophrenia.
Palavras-chave
schizophrenia, structure, subcortical shape
Referências
  1. Abdolmaleky HM, 2019, AM J MED GENET B, V180, P138, DOI 10.1002/ajmg.b.32691
  2. AKBARIAN S, 1993, ARCH GEN PSYCHIAT, V50, P178
  3. AKBARIAN S, 1993, ARCH GEN PSYCHIAT, V50, P169
  4. Algan O, 1997, J COMP NEUROL, V381, P335, DOI 10.1002/(SICI)1096-9861(19970512)381:3<335::AID-CNE6>3.0.CO;2-3
  5. ARNOLD SE, 1995, AM J PSYCHIAT, V152, P738
  6. Barbas H, 1995, HIPPOCAMPUS, V5, P511, DOI 10.1002/hipo.450050604
  7. Beckmann H, 1997, PSYCHIAT RES-NEUROIM, V68, P99, DOI 10.1016/S0925-4927(96)02947-2
  8. Berman Nancy G, 2002, BMC Med Res Methodol, V2, P10, DOI 10.1186/1471-2288-2-10
  9. Bonelli Raphael M, 2007, Dialogues Clin Neurosci, V9, P141
  10. Bora E, 2011, SCHIZOPHR RES, V127, P46, DOI 10.1016/j.schres.2010.12.020
  11. Brun C, 2008, LECT NOTES COMPUT SC, V5242, P914, DOI 10.1007/978-3-540-85990-1_110
  12. Ching CRK, 2020, AM J PSYCHIAT, V177, P589, DOI 10.1176/appi.ajp.2019.19060583
  13. Chye Y, 2020, ADDICT BIOL, V25, DOI 10.1111/adb.12830
  14. Clementz BA, 2020, BIOL PSYCHIAT-COGN N, V5, P808, DOI 10.1016/j.bpsc.2020.03.011
  15. Cobia DJ, 2017, SCHIZOPHR RES, V180, P21, DOI 10.1016/j.schres.2016.08.003
  16. Cobia DJ, 2011, SCHIZOPHR RES, V133, P68, DOI 10.1016/j.schres.2011.08.017
  17. COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155
  18. Coscia DM, 2009, HUM BRAIN MAPP, V30, P1236, DOI 10.1002/hbm.20595
  19. Critchlow HM, 2006, MOL CELL NEUROSCI, V32, P356, DOI 10.1016/j.mcn.2006.05.007
  20. CROW TJ, 1989, ARCH GEN PSYCHIAT, V46, P1145
  21. Csernansky JG, 1998, P NATL ACAD SCI USA, V95, P11406, DOI 10.1073/pnas.95.19.11406
  22. HOCHBERG Y, 1990, STAT MED, V9, P811, DOI 10.1002/sim.4780090710
  23. Csernansky JG, 2004, NEUROIMAGE, V23, pS56, DOI 10.1016/j.neuroimage.2004.07.025
  24. Csernansky JG, 2004, AM J PSYCHIAT, V161, P896, DOI 10.1176/appi.ajp.161.5.896
  25. Csernansky JG, 2002, AM J PSYCHIAT, V159, P2000, DOI 10.1176/appi.ajp.159.12.2000
  26. Danivas V, 2013, INDIAN J PSYCHOL MED, V35, P34, DOI 10.4103/0253-7176.112198
  27. Dauwan M, 2016, SCHIZOPHRENIA BULL, V42, P588, DOI 10.1093/schbul/sbv164
  28. de Zwarte SMC, 2019, BIOL PSYCHIAT, V86, P545, DOI 10.1016/j.biopsych.2019.03.985
  29. Delotterie D, 2010, PSYCHOPHARMACOLOGY, V208, P131, DOI 10.1007/s00213-009-1712-3
  30. Dorph-Petersen KA, 2005, NEUROPSYCHOPHARMACOL, V30, P1649, DOI 10.1038/sj.npp.1300710
  31. Dorph-Petersen KA, 2017, SCHIZOPHR RES, V180, P28, DOI 10.1016/j.schres.2016.08.007
  32. Falkai P, 2013, EUR ARCH PSY CLIN N, V263, P469, DOI 10.1007/s00406-012-0383-y
  33. Honea R, 2005, AM J PSYCHIAT, V162, P2233, DOI 10.1176/appi.ajp.162.12.2233
  34. Firth J, 2015, PSYCHOL MED, V45, P1343, DOI 10.1017/S0033291714003110
  35. Fornito A, 2009, SCHIZOPHR RES, V108, P104, DOI 10.1016/j.schres.2008.12.011
  36. Fortin JP, 2018, NEUROIMAGE, V167, P104, DOI 10.1016/j.neuroimage.2017.11.024
  37. FRISTON KJ, 1995, CLIN NEUROSCI, V3, P89
  38. Garey LJ, 1998, J NEUROL NEUROSUR PS, V65, P446, DOI 10.1136/jnnp.65.4.446
  39. Glantz LA, 1997, ARCH GEN PSYCHIAT, V54, P943
  40. Goldman M., 2014, SCHIZOPHRENIA RECENT, P71
  41. Gomez-Gastiasoro A, 2019, NEUROIMAGE-CLIN, V22, DOI 10.1016/j.nicl.2019.101781
  42. Gong QY, 2016, AM J PSYCHIAT, V173, P232, DOI 10.1176/appi.ajp.2015.15050641
  43. Green MF, 2004, SCHIZOPHR RES, V72, P41, DOI 10.1016/j.schres.2004.09.009
  44. Howells FM, 2016, HUM PSYCHOPHARM CLIN, V31, P64, DOI 10.1002/hup.2499
  45. Guo JY, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0216554
  46. Gutman BA, 2015, I S BIOMED IMAGING, P1402
  47. Gutman BA, 2012, 2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), P716, DOI 10.1109/ISBI.2012.6235648
  48. Haijma SV, 2013, SCHIZOPHRENIA BULL, V39, P1129, DOI 10.1093/schbul/sbs118
  49. Harms MP, 2007, J NEUROSCI, V27, P13835, DOI 10.1523/JNEUROSCI.2571-07.2007
  50. Harrison PJ, 1999, BRAIN, V122, P593, DOI 10.1093/brain/122.4.593
  51. Harrison PJ, 1999, SCHIZOPHR RES, V40, P87, DOI 10.1016/S0920-9964(99)00065-1
  52. Harrison PJ, 1998, LANCET, V352, P1669, DOI 10.1016/S0140-6736(98)03341-8
  53. Hashimoto N, 2018, NEUROIMAGE-CLIN, V17, P563, DOI 10.1016/j.nicl.2017.11.004
  54. Haukvik Unn Kristin, 2013, Tidsskr Nor Laegeforen, V133, P850, DOI 10.4045/tidsskr.12.1084
  55. Jahanshad N, 2017, J NEUROSCI RES, V95, P371, DOI 10.1002/jnr.23919
  56. Ho BC, 2011, ARCH GEN PSYCHIAT, V68, P128, DOI 10.1001/archgenpsychiatry.2010.199
  57. Ho TC, 2022, HUM BRAIN MAPP, V43, P341, DOI 10.1002/hbm.24988
  58. Jankowski MM, 2013, FRONT SYST NEUROSCI, V7, DOI 10.3389/fnsys.2013.00045
  59. Kandel E.R., 1991, PRINCIPLES NEURAL SC, V3rd ed.
  60. Kandola A, 2016, FRONT HUM NEUROSCI, V10, DOI 10.3389/fnhum.2016.00373
  61. Keshavan MS, 2007, INT REV PSYCHIATR, V19, P399, DOI 10.1080/09540260701486233
  62. Khan AR, 2008, NEUROIMAGE, V41, P735, DOI 10.1016/j.neuroimage.2008.03.024
  63. Kia Seyed Mostafa, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12267), P699, DOI 10.1007/978-3-030-59728-3_68
  64. Purcell SM, 2009, NATURE, V460, P748, DOI 10.1038/nature08185
  65. Konradi C, 2001, BIOL PSYCHIAT, V50, P729, DOI 10.1016/S0006-3223(01)01267-7
  66. Kreczmanski P, 2007, BRAIN, V130, P678, DOI 10.1093/brain/awl386
  67. Kriegeskorte N, 2006, P NATL ACAD SCI USA, V103, P3863, DOI 10.1073/pnas.0600244103
  68. Kumari V, 2010, FRONT BEHAV NEUROSCI, V4, DOI 10.3389/neuro.08.004.2010
  69. Langers DRM, 2007, NEUROIMAGE, V38, P43, DOI 10.1016/j.neuroimage.2007.07.031
  70. Lawrie SM, 1998, BRIT J PSYCHIAT, V172, P110, DOI 10.1192/bjp.172.2.110
  71. Lee JM, 2004, NEUROIMAGE, V22, P831, DOI 10.1016/j.neuroimage.2004.02.004
  72. Lerch JP, 2008, NEUROIMAGE, V39, P32, DOI 10.1016/j.neuroimage.2007.08.033
  73. Levitt JJ, 2010, CURR TOP BEHAV NEURO, V4, P243, DOI 10.1007/7854_2010_53
  74. Li WB, 2018, NEUROIMAGE-CLIN, V20, P169, DOI 10.1016/j.nicl.2018.07.008
  75. Qiu A, 2013, PSYCHOL MED, V43, P1353, DOI 10.1017/S0033291712002218
  76. Li XB, 2015, SCHIZOPHR RES, V169, P76, DOI 10.1016/j.schres.2015.08.001
  77. Liu MT, 2021, LECT NOTES COMPUT SC, V12903, P313, DOI 10.1007/978-3-030-87199-4_30
  78. Malchow B, 2016, SCHIZOPHR RES, V173, P182, DOI 10.1016/j.schres.2015.01.005
  79. Mamah D, 2008, BIOL PSYCHIAT, V64, P111, DOI 10.1016/j.biopsych.2008.01.004
  80. Mamah D, 2007, SCHIZOPHR RES, V89, P59, DOI 10.1016/j.schres.2006.08.031
  81. Mamah D, 2016, NEUROIMAGE-CLIN, V11, P276, DOI 10.1016/j.nicl.2016.02.011
  82. Mamah Daniel, 2012, Front Psychiatry, V3, P96, DOI 10.3389/fpsyt.2012.00096
  83. McCarley RW, 1999, BIOL PSYCHIAT, V45, P1099, DOI 10.1016/S0006-3223(99)00018-9
  84. McClure RK, 2013, PSYCHIAT RES-NEUROIM, V211, P1, DOI 10.1016/j.pscychresns.2012.07.001
  85. McCutcheon RA, 2019, TRENDS NEUROSCI, V42, P205, DOI 10.1016/j.tins.2018.12.004
  86. Qiu AQ, 2008, NEUROIMAGE, V42, P1430, DOI 10.1016/j.neuroimage.2008.04.257
  87. McKenna F, 2020, CEREB CORTEX, V30, P2281, DOI 10.1093/cercor/bhz239
  88. Meyer-Lindenberg A, 2001, AM J PSYCHIAT, V158, P1809, DOI 10.1176/appi.ajp.158.11.1809
  89. Narr KL, 2001, BIOL PSYCHIAT, V50, P84, DOI 10.1016/S0006-3223(00)01120-3
  90. Nuechterlein KH, 2011, SCHIZOPHRENIA BULL, V37, pS33, DOI 10.1093/schbul/sbr084
  91. Okada N, 2016, MOL PSYCHIATR, V21, P1460, DOI 10.1038/mp.2015.209
  92. Pajonk FG, 2010, ARCH GEN PSYCHIAT, V67, P133, DOI 10.1001/archgenpsychiatry.2009.193
  93. Palaniyappan L, 2012, J PSYCHIATR RES, V46, P1249, DOI 10.1016/j.jpsychires.2012.06.007
  94. Pantelis C, 2009, NEUROPSYCHOL REV, V19, P385, DOI 10.1007/s11065-009-9114-1
  95. Park SW, 2013, SYNAPSE, V67, P224, DOI 10.1002/syn.21634
  96. Pearlson GD, 1999, BIOL PSYCHIAT, V46, P627, DOI 10.1016/S0006-3223(99)00071-2
  97. Qiu AQ, 2010, NEUROIMAGE, V52, P1181, DOI 10.1016/j.neuroimage.2010.05.046
  98. Pearlson GD, 2007, CAN J PSYCHIAT, V52, P158, DOI 10.1177/070674370705200304
  99. Pomponio R, 2020, NEUROIMAGE, V208, DOI 10.1016/j.neuroimage.2019.116450
  100. Radua J, 2020, NEUROIMAGE, V218, DOI 10.1016/j.neuroimage.2020.116956
  101. Renteria ME, 2014, GENES BRAIN BEHAV, V13, P821, DOI 10.1111/gbb.12177
  102. Roalf DR, 2015, BIOL PSYCHIAT, V77, P137, DOI 10.1016/j.biopsych.2014.05.009
  103. Roiz-Santianez R, 2014, PSYCHOL MED, V44, P1591, DOI 10.1017/S0033291713002365
  104. Roiz-Santianez R, 2015, CURR NEUROPHARMACOL, V13, P422, DOI 10.2174/1570159X13666150429002536
  105. Roshchupkin GV, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms13738
  106. Bullmore ET, 1997, SCHIZOPHR RES, V28, P143, DOI 10.1016/S0920-9964(97)00114-X
  107. Rosoklija G, 2000, ARCH GEN PSYCHIAT, V57, P349, DOI 10.1001/archpsyc.57.4.349
  108. Satizabal CL, 2019, NAT GENET, V51, P1624, DOI 10.1038/s41588-019-0511-y
  109. Schindler MK, 2002, BIOL PSYCHIAT, V51, P827, DOI 10.1016/S0006-3223(01)01341-5
  110. Schmitt A, 2011, EUR ARCH PSY CLIN N, V261, P150, DOI 10.1007/s00406-011-0242-2
  111. Shenton Martha E, 2010, Dialogues Clin Neurosci, V12, P317
  112. Shenton ME, 2001, SCHIZOPHR RES, V49, P1, DOI 10.1016/S0920-9964(01)00163-3
  113. Sherman SM, 2011, J NEUROPHYSIOL, V106, P1068, DOI 10.1152/jn.00429.2011
  114. Smeland OB, 2017, JAMA PSYCHIAT, V74, P1065, DOI 10.1001/jamapsychiatry.2017.1986
  115. Smith SM, 2004, NEUROIMAGE, V23, pS208, DOI 10.1016/j.neuroimage.2004.07.051
  116. Thompson PM, 2020, TRANSL PSYCHIAT, V10, DOI 10.1038/s41398-020-0705-1
  117. Carmichael ST, 1995, J COMP NEUROL, V363, P615, DOI 10.1002/cne.903630408
  118. Thompson PM, 2014, BRAIN IMAGING BEHAV, V8, P153, DOI 10.1007/s11682-013-9269-5
  119. Thompson PM, 2003, J NEUROSCI, V23, P994
  120. Thompson PM, 2001, NAT NEUROSCI, V4, P1253, DOI 10.1038/nn758
  121. Vaillant M, 2007, NEUROIMAGE, V34, P1149, DOI 10.1016/j.neuroimage.2006.08.053
  122. Vakhrusheva Julia, 2016, Curr Behav Neurosci Rep, V3, P165
  123. van den Berg D, 2012, FRONT SYST NEUROSCI, V6, DOI 10.3389/fnsys.2012.00020
  124. van der Meulen M, 2020, DEV COGN NEUROS-NETH, V44, DOI 10.1016/j.dcn.2020.100782
  125. van Erp TGM, 2016, MOL PSYCHIATR, V21, P585, DOI 10.1038/mp.2015.118
  126. Vancampfort D, 2015, SCHIZOPHR RES, V169, P453, DOI 10.1016/j.schres.2015.09.029
  127. VOLKOW ND, 1988, SCHIZOPHR RES, V1, P47, DOI 10.1016/0920-9964(88)90039-4
  128. Chakravarty MM, 2015, HUM BRAIN MAPP, V36, P1458, DOI 10.1002/hbm.22715
  129. Wang L, 2001, NEUROIMAGE, V14, P531, DOI 10.1006/nimg.2001.0830
  130. Wang L, 2009, HIPPOCAMPUS, V19, P541, DOI 10.1002/hipo.20616
  131. Wang L, 2008, BIOL PSYCHIAT, V64, P1060, DOI 10.1016/j.biopsych.2008.08.007
  132. Wang Q, 2019, SCHIZOPHRENIA BULL, V45, P484, DOI 10.1093/schbul/sby061
  133. Wang TQ, 2017, NEUROIMAGE-CLIN, V14, P441, DOI 10.1016/j.nicl.2017.02.011
  134. Wang YL, 2011, NEUROIMAGE, V56, P1993, DOI 10.1016/j.neuroimage.2011.03.040
  135. WEINBERGER DR, 1992, AM J PSYCHIAT, V149, P890
  136. Womer FY, 2014, PSYCHIAT RES-NEUROIM, V223, P75, DOI 10.1016/j.pscychresns.2014.05.017
  137. Woods SW, 2003, J CLIN PSYCHIAT, V64, P663, DOI 10.4088/JCP.v64n0607
  138. Yang YL, 2012, HUM BRAIN MAPP, V33, P2081, DOI 10.1002/hbm.21349
  139. Chakravarty MM, 2013, HUM BRAIN MAPP, V34, P2635, DOI 10.1002/hbm.22092
  140. Young KA, 2000, BIOL PSYCHIAT, V47, P944, DOI 10.1016/S0006-3223(00)00826-X
  141. Zhu FR, 2018, EBIOMEDICINE, V36, P429, DOI 10.1016/j.ebiom.2018.09.012
  142. Chen Z, 2014, PSYCHOL MED, V44, P2489, DOI 10.1017/S003329171300319X