Use of Raman spectroscopy to evaluate the biochemical composition of normal and tumoral human brain tissues for diagnosis

Carregando...
Imagem de Miniatura
Citações na Scopus
11
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER LONDON LTD
Autores
AGUIAR, Ricardo Pinto
FALCAO, Edgar Teixeira
SILVEIRA JR., Landulfo
Citação
LASERS IN MEDICAL SCIENCE, v.37, n.1, p.121-133, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Raman spectroscopy was used to identify biochemical differences in normal brain tissue (cerebellum and meninges) compared to tumors (glioblastoma, medulloblastoma, schwannoma, and meningioma) through biochemical information obtained from the samples. A total of 263 spectra were obtained from fragments of the normal cerebellum (65), normal meninges (69), glioblastoma (28), schwannoma (8), medulloblastoma (19), and meningioma (74), which were collected using the dispersive Raman spectrometer (830 nm, near infrared, output power of 350 mW, 20 s exposure time to obtain the spectra), coupled to a Raman probe. A spectral model based on least squares fitting was developed to estimate the biochemical concentration of 16 biochemical compounds present in brain tissue, among those that most characterized brain tissue spectra, such as linolenic acid, triolein, cholesterol, sphingomyelin, phosphatidylcholine, beta-carotene, collagen, phenylalanine, DNA, glucose, and blood. From the biochemical information, the classification of the spectra in the normal and tumor groups was conducted according to the type of brain tumor and corresponding normal tissue. The classification used in discrimination models were (a) the concentrations of the biochemical constituents of the brain, through linear discriminant analysis (LDA), and (b) the tissue spectra, through the discrimination by partial least squares (PLS-DA) regression. The models obtained 93.3% discrimination accuracy through the LDA between the normal and tumor groups of the cerebellum separated according to the concentration of biochemical constituents and 94.1% in the discrimination by PLS-DA using the whole spectrum. The results obtained demonstrated that the Raman technique is a promising tool to differentiate concentrations of biochemical compounds present in brain tissues, both normal and tumor. The concentrations estimated by the biochemical model and all the information contained in the Raman spectra were both able to classify the pathological groups.
Palavras-chave
Brain tumors, Diagnosis, Raman spectroscopy, Biochemical analysis
Referências
  1. Aguiar RP, 2013, PHOTOMED LASER SURG, V31, P595, DOI 10.1089/pho.2012.3460
  2. [Anonymous], 2019, EST 2020 CANC INC BR
  3. Beljebbar A, 2008, ANAL CHEM, V80, P8406, DOI 10.1021/ac800990y
  4. Bodanese B, 2010, PHOTOMED LASER SURG, V28, pS119, DOI 10.1089/pho.2009.2565
  5. Brennan JF, 1997, CIRCULATION, V96, P99
  6. Dakovic M, 2013, TALANTA, V117, P133, DOI 10.1016/j.talanta.2013.08.058
  7. de Jong BWD, 2006, ANAL CHEM, V78, P7761, DOI 10.1021/ac061417b
  8. Desroches J, 2015, BIOMED OPT EXPRESS, V6, P2380, DOI 10.1364/BOE.6.002380
  9. Dreissig I, 2009, SPECTROCHIM ACTA A, V71, P2069, DOI 10.1016/j.saa.2008.08.008
  10. Eberhardt K, 2015, EXPERT REV MOL DIAGN, V15, P773, DOI 10.1586/14737159.2015.1036744
  11. Fallahzadeh O, 2018, LASER MED SCI, V33, P1799, DOI 10.1007/s10103-018-2544-3
  12. Gajjar K, 2013, ANAL METHODS-UK, V5, P89, DOI 10.1039/c2ay25544h
  13. Haka AS, 2005, P NATL ACAD SCI USA, V102, P12371, DOI 10.1073/pnas.0501390102
  14. Hanlon EB, 2000, PHYS MED BIOL, V45, pR1, DOI 10.1088/0031-9155/45/2/201
  15. Hedegaard M, 2010, ANAL CHEM, V82, P2797, DOI 10.1021/ac902717d
  16. Hollon T, 2016, NEUROSURG FOCUS, V40, DOI 10.3171/2015.12.FOCUS15557
  17. Horsnell JD, 2016, LASER MED SCI, V31, P1143, DOI 10.1007/s10103-016-1959-y
  18. Jarmusch AK, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163180
  19. Jermyn M, 2015, SCI TRANSL MED, V7, DOI 10.1126/scitranslmed.aaa2384
  20. Ji MB, 2013, SCI TRANSL MED, V5, DOI 10.1126/scitranslmed.3005954
  21. Kalkanis SN, 2014, J NEURO-ONCOL, V116, P477, DOI 10.1007/s11060-013-1326-9
  22. Koljenovic S, 2005, ANAL CHEM, V77, P7958, DOI 10.1021/ac0512599
  23. Koljenovic S, 2002, LAB INVEST, V82, P1265, DOI 10.1097/01.LAB.0000032545.96931.B8
  24. Krafft C, 2005, SPECTROCHIM ACTA A, V61, P1529, DOI 10.1016/j.saa.2004.11.017
  25. Krafft C, 2006, BIOPOLYMERS, V82, P301, DOI 10.1002/bip.20492
  26. Magee ND, 2009, J PHYS CHEM B, V113, P8137, DOI 10.1021/jp900379w
  27. Mehta K, 2018, ANALYST, V143, P1916, DOI 10.1039/c8an00224j
  28. MIZUNO A, 1994, J RAMAN SPECTROSC, V25, P25, DOI 10.1002/jrs.1250250105
  29. Nunes CA, 2012, J BRAZIL CHEM SOC, V23, P2003, DOI 10.1590/S0103-50532012005000073
  30. Nygren C, 1997, BRIT J NEUROSURG, V11, P216, DOI 10.1080/02688699746276
  31. Patel AP, 2019, LANCET NEUROL, V18, P376, DOI 10.1016/S1474-4422(18)30468-X
  32. Rabah R, 2008, J PEDIATR SURG, V43, P171, DOI 10.1016/j.jpedsurg.2007.09.040
  33. RIBONI L, 1984, NEUROCHEM PATHOL, V2, P171, DOI 10.1007/BF02834351
  34. Rowland PL, 2011, MERRIT TREATED NEURO
  35. Schleusener J, 2015, EXP DERMATOL, V24, P767, DOI 10.1111/exd.12768
  36. Silveira L, 2014, LASER MED SCI, V29, P1469, DOI 10.1007/s10103-014-1550-3
  37. Silveira L, 2012, J BIOMED OPT, V17, DOI 10.1117/1.JBO.17.7.077003
  38. Simeone P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0103030
  39. Stone N, 2007, ANAL BIOANAL CHEM, V387, P1657, DOI 10.1007/s00216-006-0937-9
  40. Zhou Y, 2012, J BIOMED OPT, V17, DOI 10.1117/1.JBO.17.11.116021