Please use this identifier to cite or link to this item: https://observatorio.fm.usp.br/handle/OPI/46098
Full metadata record
DC FieldValueLanguage
dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP-
dc.contributor.authorAMATO-LOURENCO, Luis Fernando-
dc.contributor.authorGALVAO, Luciana dos Santos-
dc.contributor.authorWIEBECK, Helio-
dc.contributor.authorCARVALHO-OLIVEIRA, Regiani-
dc.contributor.authorMAUAD, Thais-
dc.date.accessioned2022-04-19T13:03:59Z-
dc.date.available2022-04-19T13:03:59Z-
dc.date.issued2022-
dc.identifier.citationSCIENCE OF THE TOTAL ENVIRONMENT, v.821, article ID 153450, 8p, 2022-
dc.identifier.issn0048-9697-
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/46098-
dc.description.abstractPlastics are widely used by society, and their degradation into millimetre fragments, called microplastics (MPs), has become a global environmental threat to ecosystems and human health. However, airborne MPs' presence and fallout fluxes from the atmosphere are poorly understood and can vary significantly by different conditions, especially in megacities of low-and middle-income countries, where high levels of vehicular air pollution, a high-density popula-tion, high plastic use, and inadequate disposal are environmental threats related to airborne MPs. In this study, we in-vestigate the amount, chemical composition, and morphological characteristics of outdoor and indoor airborne MPs fallout in the megacity of Sao Paulo and assess the influence of weather and seasons on airborne MPs fallout. The re-sults were as follows: MPs were found in all samples with an average fallout rate of 309.40 +/- 214.71 MPs/m(2)/day in the indoor environment, and 123.20 +/- 47.09 MPs/m(2)/day in the outdoor environment; MPs concentrations were higher in the indoor environment than the outdoor environment, with more fibres than particles; polyester fibres (100%), polyethylene (59%) and polypropylene (26%) particles were the dominant polymers indoors, while in out-doors, polyester fibres (76%) and polyethylene (67%) and polyethylene terephthalate (25%) particles were dominant. Fragment was the dominant morphology of particles found in indoor and outdoor samples (64% and 74%, respec-tively). Outdoor MPs fallout correlated positively with rainfall, wind velocity, and relative humidity. This evidence is the first on airborne MPs ina Latin America megacity and highlights the relevant role that this source plays in dif-ferent environments.eng
dc.description.sponsorshipSAo Paulo Research Foundation (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2019/03397-5]-
dc.language.isoeng-
dc.publisherELSEVIEReng
dc.relation.ispartofScience of the Total Environment-
dc.rightsrestrictedAccesseng
dc.subjectAirborne microplasticeng
dc.subjectAmbient aireng
dc.subjectIndoor fallouteng
dc.subjectOutdoor fallouteng
dc.subjectFibreseng
dc.subjectFragmentseng
dc.subject.otherfiberseng
dc.titleAtmospheric microplastic fallout in outdoor and indoor environments in Sao Paulo megacityeng
dc.typearticleeng
dc.rights.holderCopyright ELSEVIEReng
dc.identifier.doi10.1016/j.scitotenv.2022.153450-
dc.identifier.pmid35093355-
dc.subject.wosEnvironmental Scienceseng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
hcfmusp.author.externalAMATO-LOURENCO, Luis Fernando:Univ Sao Paulo, Fac Med, Dept Pathol LIM 05, Sao Paulo, Brazil; Univ Sao Paulo, Inst Adv Studies IEA, Global Cities Program, Sao Paulo, Brazil-
hcfmusp.author.externalGALVAO, Luciana dos Santos:Inst Technol Res IPT, Lab Chem & Manufactured Goods, Sao Paulo, SP, Brazil-
hcfmusp.author.externalWIEBECK, Helio:Univ Sao Paulo, Dept Met Engn & Mat, Sao Paulo, SP, Brazil-
hcfmusp.description.articlenumber153450-
hcfmusp.description.volume821-
hcfmusp.origemWOS-
hcfmusp.origem.idWOS:000766802600006-
hcfmusp.origem.id2-s2.0-85123838926-
hcfmusp.publisher.cityAMSTERDAMeng
hcfmusp.publisher.countryNETHERLANDSeng
hcfmusp.relation.referenceAlvares CA, 2013, METEOROL Z, V22, P711, DOI 10.1127/0941-2948/2013/0507eng
hcfmusp.relation.referenceAmato-Lourenco LF, 2021, J HAZARD MATER, V416, DOI 10.1016/j.jhazmat.2021.126124eng
hcfmusp.relation.referenceAmato-Lourenco LF, 2020, SCI TOTAL ENVIRON, V749, DOI 10.1016/j.scitotenv.2020.141676eng
hcfmusp.relation.referenceBank MS, 2021, ENVIRON SCI TECHNOL, V55, P7770, DOI 10.1021/acs.est.1c00818eng
hcfmusp.relation.referenceCai LQ, 2017, ENVIRON SCI POLLUT R, V24, P24928, DOI 10.1007/s11356-017-0116-xeng
hcfmusp.relation.referenceDe Frond H, 2021, ANAL CHEM, V93, P15878, DOI [10.1021/acs.analchem.1c02549.s004, 10.1021/acs.analchem.1c02549.s003, 10.1021/acs.analchem.1c02549, 10.1021/acs.analchem.1c02549.s002]eng
hcfmusp.relation.referenceDong MT, 2020, SCI TOTAL ENVIRON, V739, DOI 10.1016/j.scitotenv.2020.139990eng
hcfmusp.relation.referenceDris R, 2017, ENVIRON POLLUT, V221, P453, DOI 10.1016/j.envpol.2016.12.013eng
hcfmusp.relation.referenceDris R, 2016, MAR POLLUT BULL, V104, P290, DOI 10.1016/j.marpolbul.2016.01.006eng
hcfmusp.relation.referenceFoulon V, 2016, ENVIRON SCI TECHNOL, V50, P10988, DOI 10.1021/acs.est.6b02720eng
hcfmusp.relation.referenceHidalgo-Ruz V, 2012, ENVIRON SCI TECHNOL, V46, P3060, DOI 10.1021/es2031505eng
hcfmusp.relation.referenceKapp KJ, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0239165eng
hcfmusp.relation.referenceKlein M, 2019, SCI TOTAL ENVIRON, V685, P96, DOI 10.1016/j.scitotenv.2019.05.405eng
hcfmusp.relation.referenceKubowicz S, 2017, ENVIRON SCI TECHNOL, V51, P12058, DOI 10.1021/acs.est.7b04051eng
hcfmusp.relation.referenceLagarinhos CAF, 2008, POLIMEROS, V18, P106, DOI 10.1590/S0104-14282008000200007eng
hcfmusp.relation.referenceLiu K, 2019, SCI TOTAL ENVIRON, V675, P462, DOI 10.1016/j.scitotenv.2019.04.110eng
hcfmusp.relation.referenceMacLeo M, 2021, SCIENCE, V373, P61, DOI 10.1126/science.abg5433eng
hcfmusp.relation.referenceMauad T, 2008, AM J RESP CRIT CARE, V178, P721, DOI 10.1164/rccm.200803-436OCeng
hcfmusp.relation.referenceNaskar AK, 2004, POLYM DEGRAD STABIL, V83, P173, DOI 10.1016/S0141-3910(03)00260-Xeng
hcfmusp.relation.referencePlasticsEurope, 2020, PLAST FACTSeng
hcfmusp.relation.referencePrata JC, 2020, SCI TOTAL ENVIRON, V702, DOI 10.1016/j.scitotenv.2019.134455eng
hcfmusp.relation.referenceRocha-Santos T, 2015, TRAC-TREND ANAL CHEM, V65, P47, DOI 10.1016/j.trac.2014.10.011eng
hcfmusp.relation.referenceRyberg MW, 2019, RESOUR CONSERV RECY, V151, DOI 10.1016/j.resconrec.2019.104459eng
hcfmusp.relation.referenceSozener ZC, 2020, J ALLERGY CLIN IMMUN, V145, P1517, DOI 10.1016/j.jaci.2020.04.024eng
hcfmusp.relation.referenceTamminga M, 2017, J EARTH SCI ENV STUD, V2, P165, DOI [10.15436/ JESES.2.2.1, DOI 10.15436/JESES.2.2.1, 10.15436/JESES.2.2.1, DOI 10.25177/JESES.2.2.1]eng
hcfmusp.relation.referenceWardrop P, 2016, ENVIRON SCI TECHNOL, V50, P4037, DOI 10.1021/acs.est.5b06280eng
hcfmusp.relation.referenceWright SL, 2020, ENVIRON INT, V136, DOI 10.1016/j.envint.2019.105411eng
hcfmusp.relation.referenceYao Y, 2022, ENVIRON RES, V207, DOI 10.1016/j.envres.2021.112142eng
hcfmusp.relation.referenceZhang Q, 2020, ENVIRON SCI TECHNOL, V54, P6530, DOI 10.1021/acs.est.0c00087eng
dc.description.indexMEDLINEeng
dc.identifier.eissn1879-1026-
hcfmusp.citation.scopus41-
hcfmusp.scopus.lastupdate2024-04-12-
Appears in Collections:

Artigos e Materiais de Revistas Científicas - FM/MPT
Departamento de Patologia - FM/MPT

Artigos e Materiais de Revistas Científicas - LIM/05
LIM/05 - Laboratório de Poluição Atmosférica Experimental

Artigos e Materiais de Revistas Científicas - ODS/03
ODS/03 - Saúde e bem-estar


Files in This Item:
File Description SizeFormat 
art_AMATO-LOURENCO_Atmospheric_microplastic_fallout_in_outdoor_and_indoor_environments_2022.PDF
  Restricted Access
publishedVersion (English)2.31 MBAdobe PDFView/Open Request a copy

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.