High-throughput Sequencing to Identify Monogenic Etiologies in a Preselected Polycystic Ovary Syndrome Cohort

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ENDOCRINE SOC
Citação
JOURNAL OF THE ENDOCRINE SOCIETY, v.6, n.9, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Context: Polycystic ovary syndrome (PCOS) etiology remains to be elucidated, but familial clustering and twin studies have shown a strong heritable component. Objective: The purpose of this study was to identify rare genetic variants that are associated with the etiology of PCOS in a preselected cohort. Methods: This prospective study was conducted among a selected group of women with PCOS. The study's inclusion criteria were patients with PCOS diagnosed by the Rotterdam criteria with the following phenotypes: severe insulin resistance (IR), normoandrogenic-normometabolic phenotype, adrenal hyperandrogenism, primary amenorrhea, and familial PCOS. Forty-five patients were studied by target sequencing, while 8 familial cases were studied by whole exome sequencing. Results: Patients were grouped according to the inclusion criteria with the following distribution: 22 (41.5%) with severe IR, 13 (24.5%) with adrenal hyperandrogenism, 7 (13.2%) with normoandrogenic phenotype, 3 (5.7%) with primary amenorrhea, and 8 (15.1%) familial cases. DNA sequencing analysis identified 1 pathogenic variant in LMNA, 3 likely pathogenic variants in INSR, PIK3R1, and DLK1, and 6 variants of uncertain significance level with interesting biologic rationale in 5 genes (LMNA, GATA4, NR5A1, BMP15, and FSHR). LMNA was the most prevalent affected gene in this cohort (3 variants). Conclusion: Several rare variants in genes related to IR were identified in women with PCOS. Although IR is a common feature of PCOS, patients with extreme or atypical phenotype should be carefully evaluated to rule out monogenic conditions.
Palavras-chave
polycystic ovary syndrome, genetics, insulin resistance, target sequencing, exome sequencing
Referências
  1. Agrawal N, 2011, SCIENCE, V333, P1154, DOI 10.1126/science.1206923
  2. Azziz R, 2005, J CLIN ENDOCR METAB, V90, P4650, DOI 10.1210/jc.2005-0628
  3. Azziz R, 2016, NAT REV DIS PRIMERS, V2, DOI 10.1038/nrdp.2016.57
  4. Balen AH, 2003, HUM REPROD UPDATE, V9, P505, DOI 10.1093/humupd/dmg044
  5. Barrowman J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032120
  6. Beck-Peccoz P, 2006, BEST PRACT RES CL EN, V20, P529, DOI 10.1016/j.beem.2006.11.001
  7. Chambers AE, 2005, MOL CELL ENDOCRINOL, V241, P1, DOI 10.1016/j.mce.2005.06.007
  8. Chen ZJ, 2011, NAT GENET, V43, P55, DOI 10.1038/ng.732
  9. Cirulli ET, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-14288-y
  10. Cirulli ET, 2010, NAT REV GENET, V11, P415, DOI 10.1038/nrg2779
  11. Dapas Matthew, 2022, Endocr Rev, DOI 10.1210/endrev/bnac001
  12. Dapas M, 2019, J CLIN ENDOCR METAB, V104, P3835, DOI 10.1210/jc.2018-02496
  13. Dauber A, 2017, J CLIN ENDOCR METAB, V102, P1557, DOI 10.1210/jc.2016-3677
  14. Day F, 2018, PLOS GENET, V14, DOI 10.1371/journal.pgen.1007813
  15. de Bruin C, 2016, HORM RES PAEDIAT, V86, P342, DOI 10.1159/000446476
  16. Di Pasquale E, 2006, J CLIN ENDOCR METAB, V91, P1976, DOI 10.1210/jc.2005-2650
  17. DUNAIF A, 1989, DIABETES, V38, P1165, DOI 10.2337/diabetes.38.9.1165
  18. Dunaif A, 2016, J CLIN ENDOCR METAB, V101, P759, DOI 10.1210/jc.2015-3780
  19. Emerson LJ, 2009, BBA-MOL BASIS DIS, V1792, P810, DOI 10.1016/j.bbadis.2009.05.007
  20. Gambineri A, 2018, NUCLEUS-PHILA, V9, P392, DOI 10.1080/19491034.2018.1509659
  21. Games LG, 2019, J CLIN ENDOCR METAB, V104, P2112, DOI 10.1210/jc.2018-02010
  22. Gorsic LK, 2017, J CLIN ENDOCR METAB, V102, P2862, DOI 10.1210/jc.2017-00612
  23. Gromoll J, 1996, MOL CELL ENDOCRINOL, V125, P177, DOI 10.1016/S0303-7207(96)03949-4
  24. HATCH R, 1981, AM J OBSTET GYNECOL, V140, P815, DOI 10.1016/0002-9378(81)90746-8
  25. Hayes MG, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms8502
  26. Huang-Doran I, 2016, JCI INSIGHT, V1, DOI 10.1172/jci.insight.88766
  27. Kulshreshtha B, 2008, GYNECOL ENDOCRINOL, V24, P637, DOI 10.1080/09513590802342858
  28. Lerario AM, 2020, CLINICS, V75, DOI 10.6061/clinics/2020/e1913
  29. Lizneva D, 2016, FERTIL STERIL, V106, P6, DOI 10.1016/j.fertnstert.2016.05.003
  30. Lourenco D, 2009, NEW ENGL J MED, V360, P1200, DOI 10.1056/NEJMoa0806228
  31. Manolio TA, 2009, NATURE, V461, P747, DOI 10.1038/nature08494
  32. Meduri G, 2008, MOL CELL ENDOCRINOL, V282, P130, DOI 10.1016/j.mce.2007.11.027
  33. MILLER SA, 1988, NUCLEIC ACIDS RES, V16, P1215, DOI 10.1093/nar/16.3.1215
  34. MOLLER DE, 1994, DIABETES, V43, P247, DOI 10.2337/diabetes.43.2.247
  35. Moon YS, 2002, MOL CELL BIOL, V22, P5585, DOI 10.1128/MCB.22.15.5585-5592.2002
  36. Naslavsky MS, 2017, HUM MUTAT, V38, P751, DOI 10.1002/humu.23220
  37. Persani L, 2014, HUM REPROD UPDATE, V20, P869, DOI 10.1093/humupd/dmu036
  38. Rankin J, 2008, AM J MED GENET A, V146A, P1530, DOI 10.1002/ajmg.a.32331
  39. Richards S, 2015, GENET MED, V17, P405, DOI 10.1038/gim.2015.30
  40. Rossetti R, 2009, HUM MUTAT, V30, P804, DOI 10.1002/humu.20961
  41. Schrade A, 2015, ENDOCRINOLOGY, V156, P1860, DOI 10.1210/en.2014-1931
  42. Shi YY, 2012, NAT GENET, V44, P1020, DOI 10.1038/ng.2384
  43. Speiser PW, 2018, J CLIN ENDOCR METAB, V103, P4043, DOI 10.1210/jc.2018-01865
  44. Tremblay JJ, 2003, J STEROID BIOCHEM, V85, P291, DOI 10.1016/S0960-0760(03)00211-5
  45. Vink JM, 2006, J CLIN ENDOCR METAB, V91, P2100, DOI 10.1210/jc.2005-1494
  46. Zhang YF, 2020, AM J OBSTET GYNECOL, V223, DOI 10.1016/j.ajog.2020.04.004