Graphene-based hybrid electrical-electrochemical point-of-care device for serologic COVID-19 diagnosis

Imagem de Miniatura
Citações na Scopus
19
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER ADVANCED TECHNOLOGY
Autores
MATTIOLI, Isabela A.
CASTRO, Karla R.
MACEDO, Lucyano J. A.
SEDENHO, Graziela C.
OLIVEIRA, Mona N.
TODESCHINI, Iris
VITALE, Phelipe M.
Citação
BIOSENSORS & BIOELECTRONICS, v.199, article ID 113866, 10p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The outbreak of COVID-19 pandemics highlighted the need of sensitive, selective, and easy-to-handle biosensing devices. In the contemporary scenario, point-of-care devices for mass testing and infection mapping within a population have proven themselves as of primordial importance. Here, we introduce a graphene-based Electrical-Electrochemical Vertical Device (EEVD) point-of-care biosensor, strategically engineered for serologic COVID-19 diagnosis. EEVD uses serologic IgG quantifications on SARS-CoV-2 Receptor Binding Domain (RBD) bioconjugate immobilized onto device surface. EEVD combines graphene basal plane with high charge carrier mobility, high conductivity, low intrinsic resistance, and interfacial sensitivity to capacitance alterations. EEVD application was carried out in real human serum samples. Since EEVD is a miniaturized device, it requires just 40 mu L of sample for a point-of-care COVID-19 infections detection. When compared to serologic assays such ELISA and other immunochromatographic methods, EEVD presents some advantages such as time of analyses (15 min), sample preparation, and a LOD of 1.0 pg mL(-1). We glimpse that EEVD meets the principles of robustness and accuracy, desirable analytic parameters for assays destined to pandemics control strategies.
Palavras-chave
SARS-CoV-2, COVID-19, Serologic detections, Graphene, IgG, Biosensor
Referências
  1. Abramed Sbac., 2021, CBDL SBPCML
  2. Ali MA, 2021, ADV MATER, V33, DOI 10.1002/adma.202006647
  3. Biswas S., 2015, IMMUNOCHEM IMMUNOPAT, V1-5, P01
  4. Bleu Y, 2019, J RAMAN SPECTROSC, V50, P1630, DOI 10.1002/jrs.5683
  5. Brownson DAC, 2014, NANOSCALE, V6, P1607, DOI 10.1039/c3nr05643k
  6. Brunetti B., 2015, PHARM ANAL ACTA, V6, P355, DOI [10.4172/2153-2435.1000355, DOI 10.4172/2153-2435.1000355]
  7. Brunner H, 1997, APPL SPECTROSC, V51, P209, DOI 10.1366/0003702971940143
  8. Busch RT, 2019, ACS OMEGA, V4, P15269, DOI 10.1021/acsomega.9b02276
  9. Carter LJ, 2020, ACS CENTRAL SCI, V6, P591, DOI 10.1021/acscentsci.0c00501
  10. Chaibun T, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-21121-7
  11. Charles A, 2001, IMMUNOBIOL IMMUNE SY, P1
  12. Chen WH, 2020, HUM VACC IMMUNOTHER, V16, P1239, DOI 10.1080/21645515.2020.1740560
  13. Chen Y, 2020, J MED VIROL, V92, P731, DOI 10.1002/jmv.25787
  14. Danielson E, 2020, SENSOR ACTUAT B-CHEM, V320, DOI 10.1016/j.snb.2020.128432
  15. de Oliveira TR, 2018, SENSOR ACTUAT B-CHEM, V255, P684, DOI 10.1016/j.snb.2017.08.075
  16. Devineau S, 2016, J AM CHEM SOC, V138, P11623, DOI 10.1021/jacs.6b04833
  17. Filik H, 2020, MICROCHEM J, V158, DOI 10.1016/j.microc.2020.105242
  18. Georgakilas V, 2016, CHEM REV, V116, P5464, DOI 10.1021/acs.chemrev.5b00620
  19. Guo SJ, 2007, ANAL CHIM ACTA, V598, P181, DOI 10.1016/j.aca.2007.07.054
  20. Hashemi SA, 2021, J ELECTROANAL CHEM, V894, DOI 10.1016/j.jelechem.2021.115341
  21. Hassan A., 2021, ACTA, V376
  22. Imai K, 2020, J CLIN VIROL, V128, DOI 10.1016/j.jcv.2020.104393
  23. Inczedy J., 1998, INT UNION PURE APPL
  24. Iost RM, 2014, CHEMELECTROCHEM, V1, P2070, DOI 10.1002/celc.201402325
  25. Isho B, 2020, SCI IMMUNOL, V5, DOI 10.1126/sciimmunol.abe5511
  26. Jiang ZX, 2020, BIOSENS BIOELECTRON, V166, DOI 10.1016/j.bios.2020.112471
  27. Kudr J, 2021, TRAC-TREND ANAL CHEM, V136, DOI 10.1016/j.trac.2021.116192
  28. Lan J, 2020, NATURE, V581, P215, DOI 10.1038/s41586-020-2180-5
  29. Lew T.T.S., 2021, ACS NANO
  30. Liang YH, 2021, J VIROL METHODS, V292, DOI 10.1016/j.jviromet.2021.114141
  31. Liu HF, 2021, SENSOR ACTUAT B-CHEM, V329, DOI 10.1016/j.snb.2020.129196
  32. Liu HC, 2012, MABS-AUSTIN, V4, P17, DOI 10.4161/mabs.4.1.18347
  33. Liu JK, 2013, NANO LETT, V13, P6170, DOI 10.1021/nl4035048
  34. Macedo LJA, 2019, CHEMELECTROCHEM, V6, P31, DOI 10.1002/celc.201800934
  35. Macedo LJA, 2018, NANOSCALE, V10, P15048, DOI 10.1039/c8nr03893g
  36. Malard LM, 2009, PHYS REP, V473, P51, DOI 10.1016/j.physrep.2009.02.003
  37. Mattioli I.A., 2020, ACS SENSORS
  38. Mattioli IA, 2021, BIOSENS BIOELECTRON, V175, DOI 10.1016/j.bios.2020.112851
  39. Mattioli Isabela A., 2020, 200 PI 2020 0101
  40. Mattioli Isabela Alteia, 2020, AN ACAD BRAS CIENC, P1
  41. Mazar FM, 2017, PROCESS BIOCHEM, V56, P71, DOI 10.1016/j.procbio.2017.02.008
  42. Minamiki T, 2014, MATERIALS, V7, P6843, DOI 10.3390/ma7096843
  43. Montesinos I, 2020, J CLIN VIROL, V128
  44. Nakhjavani SA, 2019, BIOSENS BIOELECTRON, V141, DOI 10.1016/j.bios.2019.111439
  45. Pauliukaite R, 2008, ELECTROANAL, V20, P1275, DOI 10.1002/elan.200804217
  46. Pauliukaite R, 2007, J SOLID STATE ELECTR, V11, P899, DOI 10.1007/s10008-007-0281-9
  47. Pingarron JM, 2008, ELECTROCHIM ACTA, V53, P5848, DOI 10.1016/j.electacta.2008.03.005
  48. Prakash A, 2018, OPT MATER, V79, P237, DOI 10.1016/j.optmat.2018.03.044
  49. Prasad KS, 2020, SENSOR ACTUAT B-CHEM, V305, DOI 10.1016/j.snb.2019.127516
  50. Premkumar L, 2020, SCI IMMUNOL, V5, DOI 10.1126/sciimmunol.abc8413
  51. Qing ZH, 2020, MICROCHIM ACTA, V187, DOI 10.1007/s00604-020-04486-2
  52. Qing ZH, 2020, ANGEW CHEM INT EDIT, V59, P14044, DOI 10.1002/anie.202003964
  53. Raffle A.E., 2020, BMJ, P10
  54. Ragavendar MS, 2012, IEEE ENG MED BIO, P2408, DOI 10.1109/EMBC.2012.6346449
  55. Raoof M, 2013, MICROELECTRON ENG, V111, P421, DOI 10.1016/j.mee.2013.04.035
  56. Reddy D, 2012, J PHYS D APPL PHYS, V45, DOI 10.1088/0022-3727/45/1/019501
  57. Roy E, 2017, BIOSENS BIOELECTRON, V89, P234, DOI 10.1016/j.bios.2016.02.056
  58. Sedenho GC, 2021, J POWER SOURCES, V482, DOI 10.1016/j.jpowsour.2020.229035
  59. Seo G, 2020, ACS NANO, V14, P12257, DOI [10.1021/acsnano.0c06726, 10.1021/acsnano.0c02823]
  60. Sun B, 2020, EMERG MICROBES INFEC, V9, P940, DOI [10.1080/22221751.2020.1762515, DOI 10.1080/22221751.2020.1762515]
  61. Suresh L, 2018, ENZYME MICROB TECH, V112, P43, DOI 10.1016/j.enzmictec.2017.10.009
  62. Theel ES, 2020, J CLIN MICROBIOL, V58, DOI 10.1128/JCM.00797-20
  63. Torrente-Rodriguez RM, 2020, MATTER-US, V3, DOI 10.1016/j.matt.2020.09.027
  64. Tre-Hardy M, 2021, J MED VIROL, V93, P803, DOI 10.1002/jmv.26303
  65. TURKEVICH J, 1951, DISCUSS FARADAY SOC, P55, DOI 10.1039/df9511100055
  66. Vieira NCS, 2016, J PHYS-CONDENS MAT, V28, DOI 10.1088/0953-8984/28/8/085302
  67. Vu C.A., 2021, SENSORS SWITZERLAND, V21, P1
  68. Wang QH, 2012, NAT CHEM, V4, P724, DOI [10.1038/NCHEM.1421, 10.1038/nchem.1421]
  69. Wang ZZ, 2020, LAB CHIP, V20, P4255, DOI 10.1039/d0lc00828a
  70. Wen T, 2020, ANALYST, V145, P5345, DOI [10.1039/d0an00629g, 10.1039/D0AN00629G]
  71. Who, 2020, SIT WHO REG
  72. Yakoh A., BIOSENS BIOELECTRON, V176, P11912
  73. Yang DL, 2019, ANTIBODIES, V8, DOI 10.3390/antib8010024
  74. Yang JY, 2020, NATURE, V586, P572, DOI 10.1038/s41586-020-2599-8
  75. Zeng L., 2020, MATER CHEM FRONT
  76. Zhang Y, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-66456-1
  77. Zhu YW, 2010, ADV MATER, V22, P3906, DOI 10.1002/adma.201001068