Diagnostic yield of multi-gene panel for muscular dystrophies and other hereditary myopathies

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER-VERLAG ITALIA SRL
Autores
WINCKLER, Pablo Brea
CHWAL, Bruna Cristine
SANTOS, Marco Antonnio Rocha Dos
BURGUEZ, Daniela
POLESE-BONATTO, Marcia
SIEBERT, Marina
VAIRO, Filippo Pinto e
CHAVES, Marcia Lorena Fagundes
SAUTE, Jonas Alex Morales
Citação
NEUROLOGICAL SCIENCES, v.43, n.7, p.4473-4481, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Genetic testing is being considered the first-step in the investigation of hereditary myopathies. However, the performance of the different testing approaches is little known. The aims of the present study were to evaluate the diagnostic yield of a next-generation sequencing panel comprising 39 genes as the first-tier test for genetic myopathies diagnosis and to characterize clinical and molecular findings of families from southern Brazil. Fifty-one consecutive index cases with clinical suspicion of genetic myopathies were recruited from October 2014 to March 2018 in a cross-sectional study. The overall diagnostic yield of the next-generation sequencing panel was 52.9%, increasing to 60.8% when including cases with candidate variants. Multi-gene panel solved the diagnosis of 12/25 (48%) probands with limb-girdle muscular dystrophies, of 7/14 (50%) with congenital muscular diseases, and of 7/10 (70%) with muscular dystrophy with prominent joint contractures. The most frequent diagnosis for limb-girdle muscular dystrophies were LGMD2A/LGMD-R1-calpain3-related and LGMD2B/LGMD-R2-dysferlin-related; for congenital muscular diseases, RYR1-related-disorders; and for muscular dystrophy with prominent joint contractures, Emery-Dreifuss-muscular-dystrophy-type-1 and COL6A1-related-disorders. In summary, the customized next-generation sequencing panel when applied in the initial investigation of genetic myopathies results in high diagnostic yield, likely reducing patient's diagnostic odyssey and providing important information for genetic counseling and participation in disease-specific clinical trials.
Palavras-chave
Diagnosis, Next generation sequencing, Muscular dystrophy, Hereditary myopathy
Referências
  1. Abou Tayoun AN, 2018, HUM MUTAT, V39, P1517, DOI 10.1002/humu.23626
  2. Adzhubei IA, 2010, NAT METHODS, V7, P248, DOI 10.1038/nmeth0410-248
  3. Amburgey K, 2011, ANN NEUROL, V70, P662, DOI 10.1002/ana.22510
  4. Biesecker LG, 2018, GENET MED, V20, P1687, DOI 10.1038/gim.2018.42
  5. Brnich SE, 2019, GENOME MED, V12, DOI 10.1186/s13073-019-0690-2
  6. Butterfield Russell J, 2019, Continuum (Minneap Minn), V25, P1640, DOI 10.1212/CON.0000000000000792
  7. Chakravorty S, 2020, FRONT NEUROL, V11, DOI 10.3389/fneur.2020.559327
  8. Cohen Bruce H, 2019, Continuum (Minneap Minn), V25, P1732, DOI 10.1212/CON.0000000000000805
  9. Cooper GM, 2005, GENOME RES, V15, P901, DOI 10.1101/gr.3577405
  10. Dardas Z, 2020, EUR J MED GENET, V63, DOI 10.1016/j.ejmg.2020.103845
  11. Desmet FO, 2009, NUCLEIC ACIDS RES, V37, DOI 10.1093/nar/gkp215
  12. Dimachkie MM, 2014, NEUROL CLIN, V32, P817, DOI 10.1016/j.ncl.2014.04.004
  13. Fan Y, 2018, CLIN GENET, V93, P1159, DOI 10.1111/cge.13230
  14. Fowler Anna, 2016, Wellcome Open Res, V1, P20, DOI 10.12688/wellcomeopenres.10069.1
  15. Francois-Heude MC, 2021, EUR J PAEDIATR NEURO, V31, P78, DOI 10.1016/j.ejpn.2021.01.011
  16. Ghaoui R, 2015, JAMA NEUROL, V72, P1424, DOI 10.1001/jamaneurol.2015.2274
  17. Gonzalez-Quereda L, 2020, GENES-BASEL, V11, DOI 10.3390/genes11050539
  18. Heller SA, 2020, MUSCLE NERVE, V61, P436, DOI 10.1002/mus.26782
  19. Ioannidis NM, 2016, AM J HUM GENET, V99, P877, DOI 10.1016/j.ajhg.2016.08.016
  20. Jackson Carlayne E, 2013, Continuum (Minneap Minn), V19, P1674, DOI 10.1212/01.CON.0000440665.72169.87
  21. Jagadeesh KA, 2016, NAT GENET, V48, P1581, DOI 10.1038/ng.3703
  22. Karczewski KJ, 2020, NATURE, V581, P434, DOI 10.1038/s41586-020-2308-7
  23. Kopanos C, 2019, BIOINFORMATICS, V35, P1978, DOI 10.1093/bioinformatics/bty897
  24. Kress W, 2017, NEUROPEDIATRICS, V48, P242, DOI 10.1055/s-0037-1602660
  25. Magri F, 2017, MUSCLE NERVE, V55, P55, DOI 10.1002/mus.25192
  26. Mah JK, 2016, CAN J NEUROL SCI, V43, P163, DOI 10.1017/cjn.2015.311
  27. Mercuri E, 2019, LANCET, V394, P2025, DOI 10.1016/S0140-6736(19)32910-1
  28. MILLER SA, 1988, NUCLEIC ACIDS RES, V16, P1215, DOI 10.1093/nar/16.3.1215
  29. Nallamilli BRR, 2018, ANN CLIN TRANSL NEUR, V5, P1574, DOI 10.1002/acn3.649
  30. Ng PC, 2001, GENOME RES, V11, P863, DOI 10.1101/gr.176601
  31. Nigro V, 2016, CURR OPIN NEUROL, V29, P621, DOI 10.1097/WCO.0000000000000371
  32. Norwood FLM, 2009, BRAIN, V132, P3175, DOI 10.1093/brain/awp236
  33. Pasnoor Mamatha, 2019, Continuum (Minneap Minn), V25, P1536, DOI 10.1212/CON.0000000000000799
  34. Passos-Bueno MR, 1999, AM J MED GENET, V82, P392, DOI 10.1002/(SICI)1096-8628(19990219)82:5<392::AID-AJMG7>3.0.CO;2-0
  35. Pillen S, 2008, MUSCLE NERVE, V37, P679, DOI 10.1002/mus.21015
  36. Rentzsch P, 2019, NUCLEIC ACIDS RES, V47, pD886, DOI 10.1093/nar/gky1016
  37. Richards S, 2015, GENET MED, V17, P405, DOI 10.1038/gim.2015.30
  38. Robinson JT, 2011, NAT BIOTECHNOL, V29, P24, DOI 10.1038/nbt.1754
  39. Rubegni A, 2019, NEUROL-GENET, V5, DOI 10.1212/NXG.0000000000000352
  40. Savarese M, 2016, NEUROLOGY, V87, P71, DOI 10.1212/WNL.0000000000002800
  41. Schofield D, 2017, NPJ GENOM MED, V2, DOI 10.1038/s41525-017-0006-7
  42. Schwarz JM, 2014, NAT METHODS, V11, P361, DOI 10.1038/nmeth.2890
  43. WALTON JN, 1954, T AM NEUROL ASSOC, P19
  44. Wang Y, 2016, SCI REP-UK, V6, DOI 10.1038/srep29088
  45. Wattjes MP, 2010, EUR RADIOL, V20, P2447, DOI 10.1007/s00330-010-1799-2
  46. Wicklund Matthew P, 2019, Continuum (Minneap Minn), V25, P1599, DOI 10.1212/CON.0000000000000809
  47. Winckler PB, 2019, CLIN GENET, V96, P341, DOI 10.1111/cge.13597
  48. Winder TL, 2020, NEUROL-GENET, V6, DOI 10.1212/NXG.0000000000000412
  49. Zanoteli E, 2020, CLIN NEUROL NEUROSUR, V192, DOI 10.1016/j.clineuro.2020.105734