Loss of life expectancy from PM2.5 in Brazil: A national study from 2010 to 2018

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
PERGAMON-ELSEVIER SCIENCE LTD
Autores
YU, Pei
XU, Rongbin
LI, Shanshan
SIM, Malcolm R.
ABRAMSON, Michael J.
GUO, Yuming
Citação
ENVIRONMENT INTERNATIONAL, v.166, article ID 107350, 9p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Long-term exposure to PM2.5 is proved to be linked with mortality. However, limited studies have estimated the PM2.5 related loss of life expectancy (LLE) and its changing trends. How much life expectancy would be improved if PM2.5 pollution is reduced to the new WHO air quality guideline (AQG) level is unclear. Methods: Data on deaths from all-causes, cancer, cardiovascular and respiratory diseases were collected from 5,565 Brazilian municipalities during 2010-2018. A difference-in-differences approach with quasi-Poisson regression was applied to examine the PM2.5-years of life lost (YLL) associations and PM2.5 associated LLE. Results: The annual PM2.5 concentration in each municipality from 2010 to 2018 was 7.7 mu g/m3 in Brazil. Nationally, with each 10 mu g/m3 increase in five-year-average (current and previous four years) concentrations of PM2.5, the relative risks (RRs) were 1.18 (95% CI: 1.15-1.21) for YLL from all-causes, 1.22 (1.16-1.28) from cancer, 1.12 (1.08-1.17) from cardiovascular and 1.17 (1.10-1.25) from respiratory diseases. Life expectancy could be improved by 1.09 (95% CI: 0.92-1.25) years by limiting PM2.5 concentration to the national lowest level (2.9 mu g/m3), specifically, 0.20 (0.15-0.24) years for cancer, 0.16 (0.11-0.22) years for cardiovascular and 0.09 (0.05-0.13) years for respiratory diseases, with significant disparities across regions and municipalities. Life expectancy would be improved by 0.78 (0.66-0.90) years by setting the new WHO AQG PM2.5 concentration level of 5 mu g/m3 as an acceptable threshold. Conclusions: Using nationwide death records in Brazil, we found that long-term exposure to PM2.5 was associated with reduced life expectancy from all-causes, cancer, cardiovascular and respiratory diseases with regional inequalities and different trends. PM2.5 pollution abatement to below the WHO AQG level would improve this loss of life expectancy in Brazil.
Palavras-chave
Life expectancy, Particulate matter, Mortality, Difference-in-differences
Referências
  1. Bennett JE, 2019, PLOS MED, V16, DOI 10.1371/journal.pmed.1002856
  2. Burkart KG, 2021, LANCET, V398, P685, DOI 10.1016/S0140-6736(21)01700-1
  3. Chen J, 2020, ENVIRON INT, V143, DOI 10.1016/j.envint.2020.105974
  4. Chetty R, 2016, JAMA-J AM MED ASSOC, V315, P1750, DOI 10.1001/jama.2016.4226
  5. Chudasama YV, 2020, PLOS MED, V17, DOI 10.1371/journal.pmed.1003332
  6. Fann N, 2017, ENVIRON HEALTH PERSP, V125, DOI 10.1289/EHP507
  7. Gasparrini A, 2015, LANCET, V386, P369, DOI 10.1016/S0140-6736(14)62114-0
  8. GBD 2019 Demographics Collaborators, 2020, LANCET, V396, P1160, DOI 10.1016/S0140-6736(20)30977-6
  9. Greenstone M., 2018, INTRO AIR QUALITY LI
  10. Hammer MS, 2020, ENVIRON SCI TECHNOL, V54, P7879, DOI 10.1021/acs.est.0c01764
  11. Health Effects Institute, 2022, DOES AIR POLL AFF LI
  12. Hystad P, 2020, LANCET PLANET HEALTH, V4, pE235, DOI 10.1016/S2542-5196(20)30103-0
  13. Joint FAO/WHO Expert Committee on Food Additives, 2006, World Health Organ Tech Rep Ser, V930, P1
  14. Lelieveld J, 2020, CARDIOVASC RES, V116, P1910, DOI 10.1093/cvr/cvaa025
  15. Liu C, 2019, NEW ENGL J MED, V381, P705, DOI 10.1056/NEJMoa1817364
  16. Liu T, 2021, INNOVATION-AMSTERDAM, V2, DOI 10.1016/j.xinn.2020.100072
  17. Malta DC, 2017, SAO PAULO MED J, V135, P213, DOI 10.1590/1516-3180.2016.0330050117
  18. Marinho F, 2018, LANCET, V392, P760, DOI 10.1016/S0140-6736(18)31221-2
  19. Pope CA, 2015, ENVIRON RES, V142, P591, DOI 10.1016/j.envres.2015.08.014
  20. Renzi M, 2019, ENVIRON HEALTH PERSP, V127, DOI 10.1289/EHP3759
  21. Ribeiro ALP, 2016, CIRCULATION, V133, P422, DOI 10.1161/CIRCULATIONAHA.114.008727
  22. Rodriguez-Alvarez A, 2021, SCI TOTAL ENVIRON, V792, DOI 10.1016/j.scitotenv.2021.148480
  23. Schraufnagel DE, 2019, CHEST, V155, P417, DOI 10.1016/j.chest.2018.10.041
  24. Schwartz J, 2021, ENVIRON RES, V194, DOI 10.1016/j.envres.2020.110649
  25. Sharma R, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0204940
  26. Strak M, 2021, BMJ-BRIT MED J, V374, DOI 10.1136/bmj.n1904
  27. Vos T, 2020, LANCET, V396, P1562
  28. WHO, 2020, WHODDIDNAGHE20203
  29. World Health Organization, 2019, WHO GLOB AN EST
  30. Wu YH, 2020, SCI TOTAL ENVIRON, V712, DOI 10.1016/j.scitotenv.2020.136507
  31. Yang Y, 2020, INNOVATION-AMSTERDAM, V1, DOI 10.1016/j.xinn.2020.100064
  32. Yu P, 2021, INNOVATION-AMSTERDAM, V2, DOI 10.1016/j.xinn.2021.100143
  33. Yu WH, 2020, PLOS MED, V17, DOI 10.1371/journal.pmed.1003141