Comparison of three different strategies to treat sciatic nerve regeneration: an experimental study

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ACTA CIRURGICA BRASILEIRA
Citação
ACTA CIRURGICA BRASILEIRA, v.37, n.5, article ID e370501, 9p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Purpose: To compare the effect of vein conduit filled with adipose tissue stem cells (ASC) on peripheral nerve injury regeneration. Methods: We analyzed 30 male Wistar rats surgically submitted to a 5-mm gap on the sciatic nerve. Then, the animals were divided into three groups: nerve autografting (AG, n=10), autogenous inverted glycerol-conserved vein (VG, n=10), and autogenous inverted glycerol-conserved vein + ASC (VASCG, n=10). The study endpoints were neuromotor functional analysis, gastrocnemius muscle weight, and sciatic nerve graft histomorphometry analysis. In the histologic analysis, we added a control group (naive nerve). Results: Regarding functional analysis (Walking tract- score), the findings at week 3 showed a difference between the AG and the VG (-96.6 vs. -59.6, p=0.01, respectively) and between the VG and the inverted vein + VASCG (-59.9 vs. -88.92, p=0.02). At week 12, this study showed a difference between the AG and the VG (-64.8 vs. -47.3, p=0.004, respectively), and also a difference between the VG and the VASCG (-47.3 vs. -57.4, p=0.02, respectively). There was no difference in the histomorphometry analysis (nerve diameter, Schwann cells counting). The gastrocnemius muscles on the intervention side were more atrophic when compared to the gastrocnemius muscles on the control side. Conclusion: Our results suggested better functional recovery in the inverted vein group when compared to control group, and inverted vein + ASC group.
Palavras-chave
Nerve Regeneration, Sciatic Nerve, Jugular Veins, Stem Cells, Microsurgery
Referências
  1. Allbright KO, 2018, MUSCLE NERVE, V58, P251, DOI 10.1002/mus.26094
  2. Lovaglio AC, 2019, NEUROL INDIA, V67, pS32, DOI 10.4103/0028-3886.250699
  3. Chun SY, 2019, TISSUE ENG REGEN MED, V16, P385, DOI 10.1007/s13770-019-00199-7
  4. Cunha AD, 2013, ACTA CIR BRAS, V28, P94, DOI 10.1590/S0102-86502013000200002
  5. DEMEDINACELI L, 1982, EXP NEUROL, V77, P634, DOI 10.1016/0014-4886(82)90234-5
  6. Erba P, 2010, J PLAST RECONSTR AES, V63, pE811, DOI 10.1016/j.bjps.2010.08.013
  7. Fahner PJ, 2004, INT J ARTIF ORGANS, V27, P979, DOI 10.1177/039139880402701111
  8. Grinsell D, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/698256
  9. Keskin M, 2004, PLAST RECONSTR SURG, V113, P1372, DOI 10.1097/01.PRS.0000111596.61137.A1
  10. Labroo P, 2016, SHOCK, V46, P154, DOI 10.1097/SHK.0000000000000628
  11. Li Y, 2021, FRONT NEUROL, V12, DOI 10.3389/fneur.2021.768267
  12. Li Y, 2021, BEHAV NEUROL, V2021, DOI 10.1155/2021/5586523
  13. Lin MY, 2013, HAND CLIN, V29, P331, DOI 10.1016/j.hcl.2013.04.003
  14. Meek MF, 2013, J PLAST RECONSTR AES, V66, P1307, DOI 10.1016/j.bjps.2013.04.058
  15. Menorca RMG, 2013, HAND CLIN, V29, P317, DOI 10.1016/j.hcl.2013.04.002
  16. Nakamura T, 2004, BRAIN RES, V1027, P18, DOI 10.1016/j.brainres.2004.08.040
  17. Raimondo S, 2011, ANN ANAT, V193, P334, DOI 10.1016/j.aanat.2011.03.001
  18. Riccio M, 2019, J CELL PHYSIOL, V234, P3362, DOI 10.1002/jcp.27299
  19. Siemionow M, 2022, STEM CELL REV REP, V18, P642, DOI 10.1007/s12015-021-10301-z
  20. Velichanskaya AG, 2020, SOVREM TEHNOL MED, V12, P48, DOI 10.17691/stm2020.12.5.05
  21. Wu RB, 2016, NEUROL RES, V38, P461, DOI 10.1080/01616412.2016.1181346
  22. Zhang Fengling, 2020, Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, V34, P1059, DOI 10.7507/1002-1892.201910009
  23. Zhang PX, 2013, INT J MED SCI, V10, P171, DOI 10.7150/ijms.5312
  24. Zhao X, 2021, J INVEST SURG, V34, P524, DOI 10.1080/08941939.2019.1654047