Alpha2beta1 Integrin Polymorphism in Diffuse Astrocytoma Patients

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
TEIXEIRA, Silvia A.
V, Regislaine Burim
VIAPIANO, Mariano S.
BIDINOTTO, Lucas T.
MALHEIROS, Suzana M. Fleury
ANDRADE, Augusto F.
CARLOTTI, Carlos G.
Citação
FRONTIERS IN ONCOLOGY, v.12, article ID 914156, 9p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Integrins are heterodimeric transmembrane glycoproteins resulting from the non-covalent association of an alpha and beta chain. The major integrin receptor for collagen/laminin, alpha 2 beta 1 is expressed on a wide variety of cell types and plays an essential role in the adhesion of normal and tumor cells to the extracellular matrix. Integrin-triggered signaling pathways promote the invasion and survival of glioma cells by modifying the brain microenvironment. In this study, we investigated the association of a specific genetic polymorphism of integrin alpha 2 beta 1 with the incidence of diffusely infiltrating astrocytoma and the progression of these tumors. Single-nucleotide polymorphism in intron 7 of the integrin ITGA2 gene was examined in 158 patients and 162 controls using polymerase chain reaction and restriction enzyme analysis. The ITGA2 genotype +/+ (with a BglII restriction site in both alleles) exhibited higher frequency in grade II astrocytoma compared to control (P = 0.02) whereas the genotype -/- (lacking the BglII site) correlated with the poorest survival rate (P = 0.04). In addition, in silico analyses of ITGA2 expression from low-grade gliomas (LGG, n = 515) and glioblastomas (GBM, n = 159) indicated that the higher expression of ITGA2 in LGG was associated with poor overall survival (P < 0.0001). However, the distribution of integrin ITGA2 BglII genotypes (+/+, +/-, -/-) was not significantly different between astrocytoma subgroups III and IV (P = 0.65, 0.24 and 0.33; 0.29, 0.48, 0.25, respectively) compared to control. These results suggest a narrow association between the presence of this SNP and indicate that further studies with larger samples are warranted to analyze the relation between tumor grade and overall survival, highlighting the importance of determining these polymorphisms for prognosis of astrocytomas.
Palavras-chave
single nucleotide polymorphism, extracellular matrix, brain microenvironment, tumor progression, low grade glioma, invasion, ITGA2
Referências
  1. Adorno-Cruz V, 2021, GENES DIS, V8, P493, DOI 10.1016/j.gendis.2020.01.015
  2. Arsene S, 2011, THROMB RES, V128, P293, DOI 10.1016/j.thromres.2011.05.009
  3. Ayala F, 2003, BREAST CANCER RES TR, V80, P145, DOI 10.1023/A:1024598732178
  4. Carlsson LE, 1999, BLOOD, V93, P3583, DOI 10.1182/blood.V93.11.3583.410k34_3583_3586
  5. Casorelli I, 2001, BRIT J HAEMATOL, V114, P150, DOI 10.1046/j.1365-2141.2001.02868.x
  6. Ceccarelli M, 2016, CELL, V164, P550, DOI 10.1016/j.cell.2015.12.028
  7. Chamberlain MC, 2012, EXPERT REV NEUROTHER, V12, P421, DOI [10.1586/ern.11.188, 10.1586/ERN.11.188]
  8. Chin SP, 2015, PROSTATE, V75, P723, DOI 10.1002/pros.22954
  9. Chuang YC, 2018, BIOL PROCED ONLINE, V10, DOI 10.1186/s12575-018-0073-x
  10. Corral J, 1999, THROMB HAEMOSTASIS, V81, P951, DOI 10.1055/s-0037-1614605
  11. Danen E.H., 2013, ISRN CELL BIOL, V2013, P135164, DOI [10.1155/2013/135164, DOI 10.1155/2013/135164]
  12. Dardik R, 1997, INT J CANCER, V70, P201, DOI 10.1002/(SICI)1097-0215(19970117)70:2<201::AID-IJC11>3.0.CO;2-L
  13. Delamarre E, 2009, AM J PATHOL, V175, P844, DOI 10.2353/ajpath.2009.080920
  14. Di Paola J, 2005, J THROMB HAEMOST, V3, P1511, DOI 10.1111/j.1538-7836.2005.01273.x
  15. Ding W, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0135128
  16. Ellert-Miklaszewska A, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21030888
  17. Ferraro A, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0115276
  18. Friedl P, 2003, BIOCHEM SOC SYMP, V70, P277, DOI 10.1042/bss0700277
  19. Friedlander DR, 1996, CANCER RES, V56, P1939
  20. GINGRAS MC, 1995, J NEUROIMMUNOL, V57, P143, DOI 10.1016/0165-5728(94)00178-Q
  21. Girotti MR, 2011, J INVEST DERMATOL, V131, P2438, DOI 10.1038/jid.2011.239
  22. GROSSI IM, 1988, FASEB J, V2, P2385, DOI 10.1096/fasebj.2.8.2452113
  23. Grzesiak JJ, 2006, BRIT J CANCER, V94, P1311, DOI 10.1038/sj.bjc.6603088
  24. Gui GPH, 1997, BRIT J CANCER, V75, P623, DOI 10.1038/bjc.1997.113
  25. Guo P, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-42643-7
  26. Huang CW, 2011, J NUCL MED, V52, P1979, DOI 10.2967/jnumed.111.091256
  27. HYNES RO, 1992, CELL, V69, P11, DOI 10.1016/0092-8674(92)90115-S
  28. Ihnatko R, 2006, INT J ONCOL, V29, P1025
  29. KAMATA T, 1994, J BIOL CHEM, V269, P9659
  30. Kritzik M, 1998, BLOOD, V92, P2382, DOI 10.1182/blood.V92.7.2382
  31. Kunicki TJ, 1997, BLOOD, V89, P1939, DOI 10.1182/blood.V89.6.1939
  32. Lei X, 2020, CANCER LETT, V470, P126, DOI 10.1016/j.canlet.2019.11.009
  33. Lin L, 2021, FRONT ONCOL, V11, DOI 10.3389/fonc.2021.738651
  34. Liu CZ, 2006, J PHARMACOL SCI, V101, P103, DOI 10.1254/jphs.SC0050174
  35. Louis DN, 2016, ACTA NEUROPATHOL, V131, P803, DOI 10.1007/s00401-016-1545-1
  36. Madamanchi A, 2014, ADV EXP MED BIOL, V819, P41, DOI 10.1007/978-94-017-9153-3_3
  37. Mahesparan R, 2003, ACTA NEUROPATHOL, V105, P49, DOI 10.1007/s00401-002-0610-0
  38. Matsubara Y, 2000, BLOOD, V95, P1560, DOI 10.1182/blood.V95.5.1560.005k43_1560_1564
  39. Meldolesi J, 2016, PHARMACOL RES, V107, P430, DOI 10.1016/j.phrs.2015.10.019
  40. Miyake K, 2000, J NEUROPATH EXP NEUR, V59, P18, DOI 10.1093/jnen/59.1.18
  41. Moshfegh K, 1999, LANCET, V353, P351, DOI 10.1016/S0140-6736(98)06448-4
  42. Naci D, 2015, SEMIN CANCER BIOL, V35, P145, DOI 10.1016/j.semcancer.2015.08.004
  43. NIERODZIK ML, 1995, THROMB HAEMOSTASIS, V74, P282
  44. Noushmehr H, 2010, CANCER CELL, V17, P510, DOI 10.1016/j.ccr.2010.03.017
  45. Ohgaki H, 2013, CLIN CANCER RES, V19, P764, DOI 10.1158/1078-0432.CCR-12-3002
  46. Ojalill Marjaana, 2018, Oncotarget, V9, P32435, DOI 10.18632/oncotarget.25945
  47. Paolillo M, 2016, PHARMACOL RES, V113, P55, DOI 10.1016/j.phrs.2016.08.004
  48. Paulus W, 1996, LAB INVEST, V75, P819
  49. Poglajen G, 2004, FOLIA BIOL-PRAGUE, V50, P203
  50. Quader S, 2017, J CONTROL RELEASE, V258, P56, DOI 10.1016/j.jconrel.2017.04.033
  51. Ren DY, 2019, J EXP CLIN CANC RES, V38, DOI 10.1186/s13046-019-1496-1
  52. Ringer P, 2017, MATRIX BIOL, V64, P6, DOI 10.1016/j.matbio.2017.03.004
  53. Rooprai HK, 1999, INT J DEV NEUROSCI, V17, P613, DOI 10.1016/S0736-5748(99)00051-9
  54. Ruiz-Ontanon P, 2013, STEM CELLS, V31, P1075, DOI 10.1002/stem.1349
  55. Salemi Z, 2021, J CELL PHYSIOL, V236, P4954, DOI 10.1002/jcp.30202
  56. Samur MK, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0106397
  57. Selistre-de-Araujo HS, 2005, BRAZ J MED BIOL RES, V38, P1505, DOI 10.1590/S0100-879X2005001000007
  58. Stupp R, 2009, ANN ONCOL, V20, P126, DOI 10.1093/annonc/mdp151
  59. Su CY, 2020, FRONT PHARMACOL, V11, DOI 10.3389/fphar.2020.579068
  60. TAKADA Y, 1989, EMBO J, V8, P1361, DOI 10.1002/j.1460-2075.1989.tb03516.x
  61. Teodorczyk M, 2010, J CELL PHYSIOL, V222, P1, DOI 10.1002/jcp.21901
  62. Tran T, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026858
  63. Uematsu T, 2012, J CELL PHYSIOL, V227, P3072, DOI 10.1002/jcp.23054
  64. Uhm Joon H., 1999, Frontiers in Bioscience, V4, pD188, DOI 10.2741/Uhm
  65. Vairaktaris E, 2006, EJSO-EUR J SURG ONC, V32, P455, DOI 10.1016/j.ejso.2005.12.005
  66. Van de Walle GR, 2005, J BIOL CHEM, V280, P36873, DOI 10.1074/jbc.M508148200
  67. Verhoeff TJ, 2022, BREAST CANCER RES TR, V192, P89, DOI 10.1007/s10549-021-06496-x
  68. Wadajkar AS, 2017, WIRES NANOMED NANOBI, V9, DOI 10.1002/wnan.1439
  69. Wafai R, 2020, BREAST CANCER RES, V22, DOI 10.1186/s13058-020-01366-8
  70. Wang LM, 2020, CELL PROLIFERAT, V53, DOI 10.1111/cpr.12835
  71. Yilmaz U, 2013, ASIAN PAC J CANCER P, V14, P5929, DOI 10.7314/APJCP.2013.14.10.5929
  72. Zhang X, 2012, EXP THER MED, V3, P9, DOI 10.3892/etm.2011.367