Biomechanical Analysis of Tissue Engineering Construct for Articular Cartilage Restoration-A Pre-clinical Study

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
conferenceObject
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Autores
FARIA, R. R. de
BUENO, D. F.
BORTOLUSSI, R.
ALBUQUERQUE, C.
Citação
XXVII BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2020, p.133-137, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The chondral lesion and osteoarthritis are conditions associated with an economic burden, since if left untreated may cause changes in the biomechanics of the joint and result in several injuries considered highly disabling to the individual. Mesenchymal Stem Cells (MSCs) have the immunomodulatory capacity and paracrine signaling that are useful for tissue bioengineering to treat bone and cartilage injuries. To the best of our knowledge, there is no institution in Brazil studying cartilage biomechanical properties in Good Manufacturing Practice (GMP) technique. Therefore, this study aims to describe biomechanics analysis for cartilage restoration by tissue engineering and cell therapy treatments in a GMP translational large animal model. A controlled experimental study in fourteen Brazilian miniature pigs was performed, using scaffold-free Tissue Engineering Construct (TEC) from dental pulp and synovial MSCs with 6 months follow-up. To compare the cartilage with and without TEC, indentation and maximum compressive tests were performed, as well as Finite Element model to simulate the osteochondral block and characterize its properties. The Young's Modulus of each sample was determined, and the outcomes of maximum compressive test demonstrated the cartilage integrity. The proposed method was feasible and capable to properly evaluate articular cartilage restoration.
Palavras-chave
Mechanical testing, Biomechanics, Indentation test, Cell therapy, Mesenchymal Stem Cells, Articular cartilage
Referências
  1. Ando W, 2008, TISSUE ENG PT A, V14, P2041, DOI 10.1089/ten.tea.2008.0015
  2. Armitage OE, 2017, ACTA BIOMATER, V56, P36, DOI 10.1016/j.actbio.2016.12.036
  3. Bueno DF, 2018, BONE TISSUE ENG DENT
  4. Curl WW, 1997, ARTHROSCOPY, V13, P456, DOI 10.1016/S0749-8063(97)90124-9
  5. Fernandes TL, 2018, TISSUE ENG PART C-ME, V24, P709, DOI [10.1089/ten.tec.2018.0219, 10.1089/ten.TEC.2018.0219]
  6. Flanigan DC, 2010, MED SCI SPORT EXER, V42, P1795, DOI 10.1249/MSS.0b013e3181d9eea0
  7. Gomoll AH, 2010, KNEE SURG SPORT TR A, V18, P434, DOI 10.1007/s00167-010-1072-x
  8. Harris PA, 2009, J BIOMED INFORM, V42, P377, DOI 10.1016/j.jbi.2008.08.010
  9. Hilkens P, 2013, CELL TISSUE RES, V353, P65, DOI 10.1007/s00441-013-1630-x
  10. Kilkenny C, 2010, BRIT J PHARMACOL, V160, P1577, DOI [10.1111/j.1476-5381.2010.00872.x, 10.1113/expphysiol.2010.053793, 10.1113/jphysiol.2010.192278]
  11. Knecht S, 2006, CLIN BIOMECH, V21, P999, DOI 10.1016/j.clinbiomech.2006.07.001
  12. Kuo CK, 2006, CURR OPIN RHEUMATOL, V18, P64, DOI 10.1097/01.bor.0000198005.88568.df
  13. Lu XL, 2008, MED SCI SPORT EXER, V40, P193, DOI 10.1249/mss.0b013e31815cb1fc
  14. Meloni GR, 2017, TISSUE ENG PT A, V23, P663, DOI 10.1089/ten.tea.2016.0191
  15. Patel JM, 2019, TISSUE ENG PART C-ME, V25, P593, DOI [10.1089/ten.tec.2019.0116, 10.1089/ten.TEC.2019.0116]
  16. Perera JR, 2012, ANN ROY COLL SURG, V94, P381, DOI 10.1308/003588412X13171221592573
  17. Shen J, 2014, J AM ACAD ORTHOP SUR, V22, P467, DOI 10.5435/JAAOS-22-07-467
  18. Shimomura K, 2015, CARTILAGE, V6, p13S, DOI 10.1177/1947603515571002
  19. Showery JE, 2016, J ARTHROPLASTY, V31, P2108, DOI 10.1016/j.arth.2016.03.026
  20. Toyras J, 2001, J BIOMECH, V34, P251, DOI 10.1016/S0021-9290(00)00189-5
  21. Wickham MQ, 2003, CLIN ORTHOP RELAT R, P196, DOI 10.1097/01.blo.0000072467.53786.ca