Intraoperative Analgesia with Magnesium Sulfate versus Remifentanil Guided by Plethysmographic Stress Index in Post-Bariatric Dermolipectomy: A Randomized Study

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
HINDAWI LTD
Autores
SILVA FILHO, S. E.
DAINEZ, S.
GONZALEZ, M. A. M. C.
ANGELIS, F.
SANDES, C. S.
Citação
ANESTHESIOLOGY RESEARCH AND PRACTICE, v.2022, article ID 2642488, 8p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background. Magnesium sulfate reduces pain scores and analgesic consumption. Its use as an analgesic resource in opioid-free or opioid-sparing techniques have also been tested. The evaluation of the antinociceptive potency of drugs and doses indirectly, through hemodynamic oscillations has been questioned. A relatively new algorithm called the plethysmographic stress index has been considered sensitive and relatively specific as a parameter for assessing the need for intraoperative analgesia. Objectives. The aim of this trial was to assess the intraoperative analgesic capacity of magnesium sulfate compared to remifentanil. The secondary objectives were propofol consumption and its latency, the consumption of opioids, ephedrine, and cisatracurium. Patients and Methods. Forty patients scheduled for post-bariatric dermolipectomy were randomly assigned to two groups to receive total intravenous anesthesia with target-controlled hypnosis induced with propofol. Analgesia was obtained in the remifentanil group with remifentanil at an initial dose of 0.2 mu g.kg(-1).min(-1) and in the magnesium sulfate group with magnesium sulfate 40 mg.kg(-1) + 10 mg.kg(-1.)h(-1). Results. There was no statistical hemodynamic difference between the groups before and after orotracheal intubation (p = 0.062) and before and after the surgical incision (p = 0.656). There was also no statistical difference in the variation of mean arterial pressure before and after intubation (p = 0.656) and before and after the surgical incision (p = 0.911). There was similar consumption of cisatracurium, ephedrine, and postoperative opioids between the groups. Some patients in the magnesium sulfate group needed more intraoperative fentanyl and propofol, although the latency of propofol was similar in both the groups. Conclusion. We conclude that using magnesium sulfate in intravenous general anesthesia for post-bariatric dermolipectomy is related to a significant reduction in opioid consumption without compromising hemodynamic stability. Overall, PSI monitoring was helpful in driving the analgesic strategy. The use of magnesium sulfate proved to be an important adjunct in the scenario presented, allowing the use of opioids to be avoided in certain cases. We found no statistical differences in the consumption of neuromuscular blocker and vasoconstrictor. Substituting opioids for magnesium sulfate leads to an increase in propofol consumption in the scenario presented. Studies with a larger sample are needed to corroborate the results presented and evaluate other potential advantages in reducing opioid consumption.
Palavras-chave
Referências
  1. Akhtar MI, 2011, J PAK MED ASSOC, V61, P1220
  2. Bachnas MA, 2021, J MATERN-FETAL NEO M, V34, P966, DOI 10.1080/14767058.2019.1619688
  3. Benyamin R, 2008, PAIN PHYSICIAN, V11, pS105
  4. Chen W, 2012, WORLD J GASTROENTERO, V18, P1391, DOI 10.3748/wjg.v18.i12.1391
  5. Chen XZ, 2010, ANESTHESIOLOGY, V112, P1175, DOI 10.1097/ALN.0b013e3181d3d641
  6. Choi GJ, 2021, J PERS MED, V11, DOI 10.3390/jpm11121273
  7. Colvin LA, 2019, LANCET, V393, P1558, DOI 10.1016/S0140-6736(19)30430-1
  8. Dhariwal Nerlyne K, 2017, Anesthesiol Clin, V35, P95, DOI 10.1016/j.anclin.2016.09.009
  9. Do SH, 2013, KOREAN J ANESTHESIOL, V65, P4, DOI 10.4097/kjae.2013.65.1.4
  10. Egelund TA, 2013, INTENS CARE MED, V39, P117, DOI 10.1007/s00134-012-2734-6
  11. Fawcett WJ, 1999, BRIT J ANAESTH, V83, P302, DOI 10.1093/bja/83.2.302
  12. Fletcher D, 2014, BRIT J ANAESTH, V112, P991, DOI 10.1093/bja/aeu137
  13. Gruenewald M, 2009, BRIT J ANAESTH, V103, P586, DOI 10.1093/bja/aep206
  14. Guignard B, 2000, ANESTHESIOLOGY, V93, P409, DOI 10.1097/00000542-200008000-00019
  15. Ilies C, 2010, BRIT J ANAESTH, V105, P533, DOI 10.1093/bja/aeq203
  16. ISERI LT, 1984, AM HEART J, V108, P188, DOI 10.1016/0002-8703(84)90572-6
  17. JAMES MFM, 1992, ANESTH ANALG, V74, P129
  18. Kew KM, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010909.pub2
  19. Khansari MahmoudReza, 2013, Middle East J Dig Dis, V5, P5
  20. Kissin I, 2000, ANESTH ANALG, V91, P110, DOI 10.1097/00000539-200007000-00021
  21. Kosten Thomas R, 2002, Sci Pract Perspect, V1, P13
  22. Kurz A, 2003, DRUGS, V63, P649, DOI 10.2165/00003495-200363070-00003
  23. Lee M, 2011, PAIN PHYSICIAN, V14, P145
  24. Lord MS, 2012, J CARDIOTHOR VASC AN, V26, P526, DOI 10.1053/j.jvca.2012.01.002
  25. McCartney CJL, 2004, ANESTH ANALG, V98, P1385, DOI 10.1213/01.ANE.0000108501.57073.38
  26. MOORE J, 1961, BRIT J ANAESTH, V33, P3, DOI 10.1093/bja/33.1.3
  27. Pinard AM, 2003, CAN J ANAESTH, V50, P172, DOI 10.1007/BF03017852
  28. Pocock S. J., 1983, CLIN TRIALS PRACTICA
  29. Rodriguez-Rubio L, 2016, J CLIN ANESTH, V34, P524, DOI 10.1016/j.jclinane.2016.06.011
  30. Scott MJ, 2015, ACTA ANAESTH SCAND, V59, P1212, DOI 10.1111/aas.12601
  31. Silva SE, 2021, BRAZ J ANESTHESIOL, V71, P550, DOI 10.1016/j.bjane.2021.02.008
  32. Soni M, 2021, CUREUS J MED SCIENCE, V13, DOI 10.7759/cureus.20377
  33. Sun JH, 2017, BMC ANESTHESIOL, V17, DOI 10.1186/s12871-017-0325-3
  34. Thomas SHL, 2016, BRIT J CLIN PHARMACO, V81, P420, DOI 10.1111/bcp.12726
  35. Wennervirta J, 2008, ACTA ANAESTH SCAND, V52, P1038, DOI 10.1111/j.1399-6576.2008.01687.x
  36. Won YJ, 2018, J INT MED RES, V46, P4386, DOI 10.1177/0300060518796749
  37. Zhao M, 2008, ANESTHESIOLOGY, V109, P308, DOI 10.1097/ALN.0b013e31817f4c5d