Association of Mu opioid receptor (A118G) and BDNF (G196A) polymorphisms with rehabilitation-induced cortical inhibition and analgesic response in chronic osteoarthritis pain

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Autores
PACHECO-BARRIOS, Kevin
REBELLO-SANCHEZ, Ingrid
CASTELO-BRANCO, Luis
MELO, Paulo S. de
PARENTE, Joao
CARDENAS-ROJAS, Alejandra
Citação
INTERNATIONAL JOURNAL OF CLINICAL AND HEALTH PSYCHOLOGY, v.23, n.1, article ID 100330, 11p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background/objective: Chronic pain due to osteoarthritis (OA) is a prevalent cause of global dis-ability. New biomarkers are needed to improve treatment allocation, and genetic polymorphisms are promising candidates. Method: We aimed to assess the association of OPRM1 (A118G and C17T) and brain-derived neurotrophic factor (BDNF [G196A]) polymorphisms with pain-related outcomes and motor cortex excitability metrics (measured by transcranial magnetic stimulation) in 113 knee OA patients with chronic pain. We performed adjusted multivariate regression analy-ses to compare carriers versus non-carriers in terms of clinical and neurophysiological character-istics at baseline, and treatment response (pain reduction and increased cortical inhibitory tonus) after rehabilitation. Results: Compared to non-carriers, participants with polymorphisms on both OPRM1 (A118G) and BDNF (G196A) genes were less likely to improve pain after rehabili-tation (85 and 72% fewer odds of improvement, respectively). Likewise, both carriers of OPRM1 polymorphisms (A118G and C17T) were also less likely to improve cortical inhibition (short intra-cortical inhibition [SICI], and intracortical facilitation [ICF], respectively). While pain and corti-cal inhibition improvement did not correlate in the total sample, the presence of OPRM1 (A118G) and BDNF (G196A) polymorphisms moderated this relationship. Conclusions: These results underscore the promising role of combining genetic and neurophysiological markers to endotype the treatment response in this population. (c) 2022 The Authors.
Palavras-chave
Chronic pain, Osteoarthritis, Polymorphism, Cortical excitability
Referências
  1. Bennell KL, 2012, BMJ-BRIT MED J, V345, DOI 10.1136/bmj.e4934
  2. Berger C, 2018, BRAIN BEHAV, V8, DOI 10.1002/brb3.1155
  3. Blyth FM, 2019, AM J PUBLIC HEALTH, V109, P35, DOI 10.2105/AJPH.2018.304747
  4. Bobeck EN, 2014, NEUROPSYCHOPHARMACOL, V39, P2142, DOI 10.1038/npp.2014.62
  5. Cardenas-Rojas A, 2020, EXPERT REV NEUROTHER, V20, P401, DOI 10.1080/14737175.2020.1738927
  6. Cash RFH, 2021, CLIN NEUROPHYSIOL, V132, P2827, DOI 10.1016/j.clinph.2021.07.029
  7. Caumo W, 2016, FRONT HUM NEUROSCI, V10, DOI 10.3389/fnhum.2016.00357
  8. Courtney CA, 2012, CURR PAIN HEADACHE R, V16, P518, DOI 10.1007/s11916-012-0299-2
  9. Dai W, 2016, NEUROSCIENCE, V336, P114, DOI 10.1016/j.neuroscience.2016.08.053
  10. Demirtas-Tatlidede A, 2015, NEUROREHABILITATION, V36, P51, DOI 10.3233/NRE-141191
  11. Di Lazzaro V, 2015, BRAIN STIMUL, V8, P92, DOI 10.1016/j.brs.2014.08.006
  12. Dworkin RH, 2008, J PAIN, V9, P105, DOI 10.1016/j.jpain.2007.09.005
  13. Egan MF, 2003, CELL, V112, P257, DOI 10.1016/S0092-8674(03)00035-7
  14. Ferguson BR, 2018, FRONT NEURAL CIRCUIT, V12, DOI 10.3389/fncir.2018.00037
  15. Foulkes T, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000086
  16. Fregni F, 2021, INT J NEUROPSYCHOPH, V24, P256, DOI 10.1093/ijnp/pyaa051
  17. Generaal E, 2016, MOL PAIN, V12, DOI 10.1177/1744806916646783
  18. Guler MA, 2020, CLIN RHEUMATOL, V39, P269, DOI 10.1007/s10067-019-04749-1
  19. Haas L, 2010, NEUROCHEM RES, V35, P830, DOI 10.1007/s11064-010-0129-z
  20. Hallett M, 2007, NEURON, V55, P187, DOI 10.1016/j.neuron.2007.06.026
  21. Hempstead Barbara L, 2015, Trans Am Clin Climatol Assoc, V126, P9
  22. Hollins M, 2020, EXP BRAIN RES, V238, P321, DOI 10.1007/s00221-019-05715-8
  23. Kittelson AJ, 2014, EXP BRAIN RES, V232, P3991, DOI 10.1007/s00221-014-4079-6
  24. Lee M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057690
  25. Lever IJ, 2001, J NEUROSCI, V21, P4469, DOI 10.1523/JNEUROSCI.21-12-04469.2001
  26. Lima LV, 2017, J PHYSIOL-LONDON, V595, P4141, DOI 10.1113/JP273355
  27. Mague SD, 2010, DRUG ALCOHOL DEPEN, V108, P172, DOI 10.1016/j.drugalcdep.2009.12.016
  28. Malcolm MP, 2006, CLIN NEUROPHYSIOL, V117, P1037, DOI 10.1016/j.clinph.2006.02.005
  29. McDonnell MN, 2006, EXP BRAIN RES, V173, P86, DOI 10.1007/s00221-006-0365-2
  30. Menzler K, 2014, EPILEPSIA, V55, P362, DOI 10.1111/epi.12515
  31. Merighi A, 2018, PROG NEUROBIOL, V169, P91, DOI 10.1016/j.pneurobio.2018.06.012
  32. Miller NR, 2014, BRAIN INJURY, V28, P1270, DOI 10.3109/02699052.2014.915987
  33. MILLER SA, 1988, NUCLEIC ACIDS RES, V16, P1215, DOI 10.1093/nar/16.3.1215
  34. Moll GH, 2003, ACTA PSYCHIAT SCAND, V107, P69, DOI 10.1034/j.1600-0447.2003.02114.x
  35. Nijs J, 2015, EXPERT OPIN THER TAR, V19, P565, DOI 10.1517/14728222.2014.994506
  36. Notaras M, 2015, MOL PSYCHIATR, V20, P916, DOI 10.1038/mp.2015.27
  37. Ogiwara I, 2007, J NEUROSCI, V27, P5903, DOI 10.1523/JNEUROSCI.5270-06.2007
  38. Pacheco-Barrios K, 2020, PAIN MED, V21, P2310, DOI 10.1093/pm/pnaa039
  39. Pecina M, 2015, NEUROPSYCHOPHARMACOL, V40, P957, DOI 10.1038/npp.2014.272
  40. Rossini PM, 2015, CLIN NEUROPHYSIOL, V126, P1071, DOI 10.1016/j.clinph.2015.02.001
  41. SANGER F, 1977, P NATL ACAD SCI USA, V74, P5463, DOI 10.1073/pnas.74.12.5463
  42. Santos LC, 2020, FRONT NEUROL, V11, DOI 10.3389/fneur.2020.00720
  43. Schwenkreis P, 2003, NEUROLOGY, V61, P515, DOI 10.1212/WNL.61.4.515
  44. Simis M, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-03281-0
  45. Simis M, 2021, FRONT NEUROL, V12, DOI 10.3389/fneur.2021.695406
  46. Sluka KA, 2013, J APPL PHYSIOL, V114, P725, DOI 10.1152/japplphysiol.01317.2012
  47. Tan EC, 2003, NEUROREPORT, V14, P569, DOI 10.1097/00001756-200303240-00008
  48. Turner MN, 2020, SPORTS HEALTH, V12, P200, DOI 10.1177/1941738119887183
  49. Vossen H, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013641
  50. Wang YJ, 2012, NEUROSCIENCE, V205, P178, DOI 10.1016/j.neuroscience.2011.12.033
  51. Willett MJ, 2020, PAIN PRACT, V20, P277, DOI 10.1111/papr.12851
  52. Xie SH, 2021, J MED INTERNET RES, V23, DOI 10.2196/21542
  53. Yue LP, 2017, NEUROSCI LETT, V655, P7, DOI 10.1016/j.neulet.2017.06.028
  54. Zhang Y, 2005, J BIOL CHEM, V280, P32618, DOI 10.1074/jbc.M504942200
  55. Ziemann U, 1998, ELECTROMYOGR MOTOR C, V109, P321, DOI 10.1016/S0924-980X(98)00023-X
  56. Ziemann Ulf, 2013, Handb Clin Neurol, V116, P387, DOI 10.1016/B978-0-444-53497-2.00032-2
  57. Zorina-Lichtenwalter K, 2016, NEUROSCIENCE, V338, P36, DOI 10.1016/j.neuroscience.2016.04.041