Genomic analysis of ERVWE2 locus in patients with multiple sclerosis: absence of genetic association but potential role of human endogenous retrovirus type W elements in molecular mimicry with myelin antigen

Carregando...
Imagem de Miniatura
Citações na Scopus
23
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS RESEARCH FOUNDATION
Autores
OLIVAL, Guilherme S. do
FARIA, Thiago S.
OLIVEIRA, Augusto C. P. de
VIDAL, Jose E.
CAVENAGHI, Vitor B.
TILBERY, Charles P.
MORAES, Lenira
Citação
FRONTIERS IN MICROBIOLOGY, v.4, article ID 172, 7p, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Human endogenous retroviruses (HERVs) arise from ancient infections of the host germline cells by exogenous retroviruses, constituting 8% of the human genome. Elevated level of envelope transcripts from HERVs-W has been detected in CSF, plasma and brain tissues from patients with Multiple Sclerosis (MS), most of them from Xq22.3, 15q21.3, and 6q21 chromosomes. However, since the locus Xq22.3 (ERVWE2) lack the 5' LTR promoter and the putative protein should be truncated due to a stop codon, we investigated the ERVWE2 genomic loci from 84 individuals, including MS patients with active HERV-W expression detected in PBMC. In addition, an automated search for promoter sequences in 20 kb nearby region of ERVWE2 reference sequence was performed. Several putative binding sites for cellular cofactors and enhancers were found, suggesting that transcription may occur via alternative promoters. However, ERVWE2 DNA sequencing of MS and healthy individuals revealed that all of them harbor a stop codon at site 39, undermining the expression of a full-length protein. Finally, since plaque formation in central nervous system (CNS) of MS patients is attributed to immunological mechanisms triggered by autoimmune attack against myelin, we also investigated the level of similarity between envelope protein and myelin oligodendrocyte glycoprotein (MOG). Comparison of the MOG to the envelope identified five retroviral regions similar to the Ig-like domain of MOG. Interestingly, one of them includes T and B cell epitopes, capable to induce T effector functions and circulating Abs in rats. In sum, although no DNA substitutions that would link ERVWE2 to the MS pathogeny was found, the similarity between the envelope protein to MOG extends the idea that ERVEW2 may be involved on the immunopathogenesis of MS, maybe facilitating the MOG recognizing by the immune system. Although awaiting experimental evidences, the data presented here may expand the scope of the endogenous retroviruses involvement on MS pathogenesis.
Palavras-chave
multiple sclerosis, immunopathogeny, endogenous retroviruses, ERVWE2, genetic association, MOG
Referências
  1. Antony JM, 2004, NAT NEUROSCI, V7, P1088, DOI 10.1038/nn1319
  2. Antony JM, 2011, BBA-MOL BASIS DIS, V1812, P162, DOI 10.1016/j.bbadis.2010.07.016
  3. Bannert N, 2004, P NATL ACAD SCI USA, V101, P14572, DOI 10.1073/pnas.0404838101
  4. Bernard C C, 1991, Acta Neurol (Napoli), V13, P171
  5. Blond JL, 1999, J VIROL, V73, P1175
  6. Christensen T, 2003, MULT SCLER, V9, P6, DOI 10.1191/1352458503ms867oa
  7. Clausen J, 2003, Int MS J, V10, P22
  8. Colmegna I, 2006, INFECT DIS CLIN N AM, V20, P913, DOI 10.1016/j.idc.2006.09.008
  9. Costas J, 2002, MOL BIOL EVOL, V19, P526
  10. Dolei A, 2009, J NEUROVIROL, V15, P4, DOI 10.1080/13550280802448451
  11. Ehlhardt S, 2006, J RHEUMATOL, V33, P16
  12. Frith MC, 2001, BIOINFORMATICS, V17, P878, DOI 10.1093/bioinformatics/17.10.878
  13. Garson JA, 1998, LANCET, V351, P33, DOI 10.1016/S0140-6736(98)24001-3
  14. Gregersen JW, 2006, NATURE, V443, P574, DOI 10.1038/nature05133
  15. Ichikawa M, 1996, J IMMUNOL, V157, P919
  16. Jones S., 1994, CAMBRIDGE ENCY HUMAN
  17. Komurian-Pradel F, 1999, VIROLOGY, V260, P1, DOI 10.1006/viro.1999.9792
  18. Lander ES, 2001, NATURE, V409, P860, DOI 10.1038/35057062
  19. Laufer G, 2009, RETROVIROLOGY, V6, DOI 10.1186/1742-4690-6-37
  20. Lee WJ, 2003, J GEN VIROL, V84, P2229, DOI 10.1099/vir.0.19076-0
  21. Macfarlane C, 2004, J MOL EVOL, V59, P642, DOI 10.1007/s00239-004-2656-1
  22. Mameli G, 2009, J VIROL METHODS, V161, P98, DOI 10.1016/j.jviromet.2009.05.024
  23. Mameli G, 2007, J GEN VIROL, V88, P264, DOI 10.1099/vir.0.81890-0
  24. Miller S., 2001, ADV VIRUS RES
  25. Nellaker C, 2006, RETROVIROLOGY, V3, DOI 10.1186/1742-4690-3-44
  26. Ogasawara H, 2010, LUPUS, V19, P111, DOI 10.1177/0961203309106767
  27. Owens GP, 2011, NEUROSCIENTIST, V17, P659, DOI 10.1177/1073858411386615
  28. Perron H, 2012, MULT SCLER J, V18, P1721, DOI 10.1177/1352458512441381
  29. Perron H, 2001, VIROLOGY, V287, P321, DOI 10.1006/viro.2001.1045
  30. Perron H, 2010, CLIN REV ALLERG IMMU, V39, P51, DOI 10.1007/s12016-009-8170-x
  31. Perron H, 1997, P NATL ACAD SCI USA, V94, P7583, DOI 10.1073/pnas.94.14.7583
  32. Polman Chris H., 2011, ANN NEUROL, V69, P292, DOI 10.1002/ANA.22366
  33. Prudhomme S, 2004, J VIROL, V78, P12157, DOI 10.1128/JVI.78.22.12157-12168.2004
  34. Roebke C, 2010, RETROVIROLOGY, V7, DOI 10.1186/1742-4690-7-69
  35. Rolland A, 2006, J IMMUNOL, V176, P7636
  36. Schon U, 2001, VIROLOGY, V279, P280, DOI 10.1006/viro.2000.0712
  37. Schulz WA, 2006, CURR TOP MICROBIOL, V310, P211
  38. Tai AK, 2008, MULT SCLER J, V14, P1175, DOI 10.1177/1352458508094641
  39. Trejbalova K, 2011, NUCLEIC ACIDS RES, V39, P8728, DOI 10.1093/nar/gkr562
  40. Urnovitz HB, 1996, CLIN MICROBIOL REV, V9, P72