Intraoperative Imaging Techniques to Improve Surgical Resection Margins of Oropharyngeal Squamous Cell Cancer: A Comprehensive Review of Current Literature

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
KLEIJN, Bertram J. de
HELDENS, Gijs T. N.
HERRUER, Jasmijn M.
SIER, Cornelis F. M.
PIAZZA, Cesare
BREE, Remco de
GUNTINAS-LICHIUS, Orlando
POORTEN, Vincent Vander
RODRIGO, Juan P.
Citação
CANCERS, v.15, n.3, article ID 896, 25p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Simple Summary In head and neck cancer, there are several treatment options. When surgical treatment is chosen, removal of the entire tumor is necessary for optimal therapy of the patient. This, however, is challenging in vulnerable areas of the body such as the mouth and throat, as a more radical resection leads to more severe functional limitations after surgery. Several imaging techniques facilitate the distinction of tumor versus adjacent healthy tissue during the operation, which can help the surgeon remove the entire tumor with optimal functional outcomes. In this paper, we aim to provide an overview of these imaging techniques applicable to oropharyngeal squamous cell carcinoma and discuss the possibilities for optimizing the surgical outcome of patients. Inadequate resection margins in head and neck squamous cell carcinoma surgery necessitate adjuvant therapies such as re-resection and radiotherapy with or without chemotherapy and imply increasing morbidity and worse prognosis. On the other hand, taking larger margins by extending the resection also leads to avoidable increased morbidity. Oropharyngeal squamous cell carcinomas (OPSCCs) are often difficult to access; resections are limited by anatomy and functionality and thus carry an increased risk for close or positive margins. Therefore, there is a need to improve intraoperative assessment of resection margins. Several intraoperative techniques are available, but these often lead to prolonged operative time and are only suitable for a subgroup of patients. In recent years, new diagnostic tools have been the subject of investigation. This study reviews the available literature on intraoperative techniques to improve resection margins for OPSCCs. A literature search was performed in Embase, PubMed, and Cochrane. Narrow band imaging (NBI), high-resolution microendoscopic imaging, confocal laser endomicroscopy, frozen section analysis (FSA), ultrasound (US), computed tomography scan (CT), (auto) fluorescence imaging (FI), and augmented reality (AR) have all been used for OPSCC. NBI, FSA, and US are most commonly used and increase the rate of negative margins. Other techniques will become available in the future, of which fluorescence imaging has high potential for use with OPSCC.
Palavras-chave
intraoperative imaging, narrow band imaging, high resolution microendoscopic imaging, confocal laser endomicroscopy, ultrasound, (auto) fluorescence imaging, augmented reality, transoral surgery, frozen section analysis, computed tomography
Referências
  1. Alfonso-Garcia A, 2021, J BIOPHOTONICS, V14, DOI 10.1002/jbio.202000472
  2. Azam MA, 2022, FRONT ONCOL, V12, DOI 10.3389/fonc.2022.900451
  3. Baliga S, 2020, CANCERS, V12, DOI 10.3390/cancers12092474
  4. Barroso EM, 2015, ANAL CHEM, V87, P2419, DOI 10.1021/ac504362y
  5. Barroso EM, 2016, CANCER RES, V76, P5945, DOI 10.1158/0008-5472.CAN-16-1227
  6. Blanco RGF, 2013, J LAPAROENDOSC ADV S, V23, P900, DOI 10.1089/lap.2013.0261
  7. Nata FB, 2022, EUR ARCH OTO-RHINO-L, V279, P2133, DOI 10.1007/s00405-021-07016-9
  8. Bulsara VM, 2018, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD006205.pub4
  9. Cals FLJ, 2015, LAB INVEST, V95, P1186, DOI 10.1038/labinvest.2015.85
  10. Castellano A, 2019, OTOLARYNG HEAD NECK, V161, P561, DOI 10.1177/0194599819844755
  11. Chan JYK, 2020, J ROBOT SURG, V14, P579, DOI 10.1007/s11701-019-01030-0
  12. Gao RW, 2018, CANCER RES, V78, P5144, DOI 10.1158/0008-5472.CAN-18-0878
  13. Garzino-Demo P, 2006, J CRANIO MAXILL SURG, V34, P344, DOI 10.1016/j.jcms.2006.04.004
  14. Goetz M, 2011, J BIOPHOTONICS, V4, P498, DOI 10.1002/jbio.201100022
  15. Gono K, 2004, J BIOMED OPT, V9, P568, DOI 10.1117/1.1695563
  16. Gorpas D, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-018-37237-8
  17. Gorphe P, 2019, ORAL ONCOL, V98, P69, DOI 10.1016/j.oraloncology.2019.09.017
  18. Gregoire V, 2022, CANCER RADIOTHER, V26, P174, DOI 10.1016/j.canrad.2021.10.002
  19. Halicek M, 2019, CANCERS, V11, DOI 10.3390/cancers11091367
  20. Hardman JC, 2022, JNCI-J NATL CANCER I, DOI 10.1093/jnci/djac130
  21. Hargreaves S, 2019, FRONT ONCOL, V9, DOI 10.3389/fonc.2019.00936
  22. McMahon J, 2003, BRIT J ORAL MAX SURG, V41, P224, DOI 10.1016/S0266-4356(03)00119-0
  23. Heidkamp J, 2020, HEAD NECK-J SCI SPEC, V42, P2039, DOI 10.1002/hed.26125
  24. Herruer JM, 2020, OTOLARYNG HEAD NECK, V162, P313, DOI 10.1177/0194599819900794
  25. Hinni ML, 2015, CURR OPIN OTOLARYNGO, V23, P132, DOI 10.1097/MOO.0000000000000143
  26. Hinni ML, 2013, HEAD NECK-J SCI SPEC, V35, P1362, DOI 10.1002/hed.23110
  27. Hinni ML, 2013, LARYNGOSCOPE, V123, P1190, DOI 10.1002/lary.23900
  28. Horwich P, 2021, J OTOLARYNGOL-HEAD N, V50, DOI 10.1186/s40463-021-00501-5
  29. House R, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0205077
  30. Hutcheson KA, 2019, JAMA OTOLARYNGOL, V145, P1053, DOI 10.1001/jamaoto.2019.2725
  31. Hutcheson KA, 2015, EUR ARCH OTO-RHINO-L, V272, P463, DOI 10.1007/s00405-014-2985-7
  32. Kahng PW, 2019, INT J COMPUT ASS RAD, V14, P885, DOI 10.1007/s11548-018-01907-9
  33. Mercante G, 2013, ACTA OTORHINOLARYNGO, V33, P230
  34. Kang CJ, 2022, CANCERS, V14, DOI 10.3390/cancers14010015
  35. Katada C, 2010, ENDOSCOPY, V42, P185, DOI 10.1055/s-0029-1243963
  36. Katada C, 2008, LARYNGOSCOPE, V118, P1787, DOI 10.1097/MLG.0b013e31817f4d22
  37. Kiesslich R, 2006, GASTROENTEROL CLIN N, V35, P605, DOI 10.1016/j.gtc.2006.07.004
  38. Kossatz S, 2020, NAT BIOMED ENG, V4, P272, DOI 10.1038/s41551-020-0526-9
  39. Lee YJ, 2021, LARYNGOSCOPE, V131, P529, DOI 10.1002/lary.28822
  40. Lin YC, 2011, HEAD NECK-J SCI SPEC, V33, P591, DOI 10.1002/hed.21310
  41. Liu WP, 2013, J ROBOT SURG, V7, P217, DOI 10.1007/s11701-013-0420-5
  42. Liu WP, 2015, J ROBOT SURG, V9, P223, DOI 10.1007/s11701-015-0520-5
  43. Liu WP, 2015, INT J MED ROBOT COMP, V11, P256, DOI 10.1002/rcs.1602
  44. Meulemans J, 2022, HEAD NECK-J SCI SPEC, V44, P143, DOI 10.1002/hed.26902
  45. LOREE TR, 1990, AM J SURG, V160, P410, DOI 10.1016/S0002-9610(05)80555-0
  46. Ma AK, 2017, HEAD NECK-J SCI SPEC, V39, P1976, DOI 10.1002/hed.24805
  47. MacKay C, 2022, OTO OPEN, V6, DOI 10.1177/2473974X221101024
  48. Malini R, 2006, BIOPOLYMERS, V81, P179, DOI 10.1002/bip.20398
  49. Marsden M, 2021, IEEE T BIO-MED ENG, V68, P857, DOI 10.1109/TBME.2020.3010480
  50. Matsuba H, 2011, LARYNGOSCOPE, V121, P753, DOI 10.1002/lary.21553
  51. Miles BA, 2015, LARYNGOSCOPE, V125, P2308, DOI 10.1002/lary.25400
  52. Muldoon TJ, 2008, GASTROINTEST ENDOSC, V68, P737, DOI 10.1016/j.gie.2008.05.018
  53. Muldoon TJ, 2007, OPT EXPRESS, V15, P16413, DOI 10.1364/OE.15.016413
  54. Muto M, 2010, J CLIN ONCOL, V28, P1566, DOI 10.1200/JCO.2009.25.4680
  55. Namikawa T, 2020, SURG TODAY, V50, P821, DOI 10.1007/s00595-019-01851-4
  56. Nguyen AT, 2020, JAMA ONCOL, V6, P1555, DOI 10.1001/jamaoncol.2020.3172
  57. Nichols AC, 2022, J CLIN ONCOL, V40, P866, DOI 10.1200/JCO.21.01961
  58. Stieve M, 2006, ACTA OTO-LARYNGOL, V126, P82, DOI 10.1080/00016480510040119
  59. Nichols AC, 2019, LANCET ONCOL, V20, P1349, DOI 10.1016/S1470-2045(19)30410-3
  60. Noorlag R, 2020, ORAL ONCOL, V110, DOI 10.1016/j.oraloncology.2020.104895
  61. Paderno A, 2022, FRONT SURG, V9, DOI 10.3389/fsurg.2022.933297
  62. Paderno A, 2021, FRONT ONCOL, V11, DOI 10.3389/fonc.2021.626602
  63. Palma DA, 2022, JAMA ONCOL, V8, P845, DOI 10.1001/jamaoncol.2022.0615
  64. Patsias A, 2015, HEAD NECK-J SCI SPEC, V37, pE99, DOI 10.1002/hed.23892
  65. Paydarfar JA, 2019, HEAD NECK-J SCI SPEC, V41, pE1, DOI 10.1002/hed.25380
  66. Pazdrowski J, 2010, REP PRACT ONCOL RADI, V15, P60, DOI 10.1016/j.rpor.2010.04.001
  67. Persky MJ, 2018, OTOLARYNG HEAD NECK, V158, P660, DOI 10.1177/0194599817742852
  68. Piazza C, 2010, ORAL ONCOL, V46, P307, DOI 10.1016/j.oraloncology.2010.01.020
  69. Swisher-McClure S, 2020, INT J RADIAT ONCOL, V106, P725, DOI 10.1016/j.ijrobp.2019.11.021
  70. Piazza C, 2016, EUR ARCH OTO-RHINO-L, V273, P3347, DOI 10.1007/s00405-016-3925-5
  71. Pierce MC, 2011, AM J GASTROENTEROL, V106, P1722, DOI 10.1038/ajg.2011.140
  72. Pratt P, 2018, ORL J OTO-RHINO-LARY, V80, P204, DOI 10.1159/000489467
  73. Ragazzi M, 2016, ADV ANAT PATHOL, V23, P159, DOI 10.1097/PAP.0000000000000114
  74. Rasouli Pezhman, 2020, Gastroenterol Hepatol Bed Bench, V13, P191
  75. Robbins KT, 2019, AURIS NASUS LARYNX, V46, P10, DOI 10.1016/j.anl.2018.08.011
  76. Rodner E, 2019, HEAD NECK-J SCI SPEC, V41, P116, DOI 10.1002/hed.25489
  77. Rutten H, 2011, INT J RADIAT ONCOL, V81, P923, DOI 10.1016/j.ijrobp.2010.07.013
  78. Sekine R, 2015, J ORAL MAX SURG MED, V27, P624, DOI 10.1016/j.ajoms.2014.11.010
  79. Serinelli S, 2022, HEAD NECK PATHOL, V16, P466, DOI 10.1007/s12105-021-01385-7
  80. Takano JH, 2010, INT J ORAL MAX SURG, V39, P208, DOI 10.1016/j.ijom.2010.01.007
  81. Shahid Muhammad W, 2011, J Interv Gastroenterol, V1, P166
  82. Sievert M, 2021, EUR ARCH OTO-RHINO-L, V278, P4433, DOI 10.1007/s00405-021-06659-y
  83. Singh A, 2020, CURR ONCOL REP, V22, DOI 10.1007/s11912-020-00942-7
  84. Soldatova L, 2019, ANN OTO RHINOL LARYN, V128, P802, DOI 10.1177/0003489419842256
  85. Steens SCA, 2017, INT J COMPUT ASS RAD, V12, P821, DOI 10.1007/s11548-017-1524-6
  86. Stelmes JJ, 2019, FRONT ONCOL, V9, DOI 10.3389/fonc.2019.00999
  87. Tamashiro A, 2020, DIGEST ENDOSC, V32, P1057, DOI 10.1111/den.13653
  88. Tarabichi O, 2019, LARYNGOSCOPE, V129, P662, DOI 10.1002/lary.27403
  89. Tateya I, 2014, CASE REP OTOLARYNGOL, V2014, DOI 10.1155/2014/604737
  90. Tirelli G, 2018, SURG ONCOL, V27, P643, DOI 10.1016/j.suronc.2018.08.003
  91. Tirelli G, 2019, LARYNGOSCOPE, V129, P1810, DOI 10.1002/lary.27567
  92. Tirelli G, 2018, AM J OTOLARYNG, V39, P197, DOI 10.1016/j.amjoto.2017.11.004
  93. Tirelli G, 2016, ANN OTO RHINOL LARYN, V125, P596, DOI 10.1177/0003489416641428
  94. Chaturvedi AK, 2011, J CLIN ONCOL, V29, P4294, DOI 10.1200/JCO.2011.36.4596
  95. Tirelli G, 2015, ORAL ONCOL, V51, P908, DOI 10.1016/j.oraloncology.2015.07.005
  96. Ugumori T, 2009, HEAD NECK-J SCI SPEC, V31, P189, DOI 10.1002/hed.20943
  97. Ultrawave, US
  98. van Keulen S, 2019, J AM COLL SURGEONS, V229, P560, DOI 10.1016/j.jamcollsurg.2019.09.007
  99. van Keulen S, 2019, CLIN CANCER RES, V25, P4656, DOI 10.1158/1078-0432.CCR-19-0319
  100. van Lanschot CGF, 2019, HEAD NECK-J SCI SPEC, V41, P2159, DOI 10.1002/hed.25690
  101. van Schaik JE, 2021, ORAL ONCOL, V121, DOI 10.1016/j.oraloncology.2021.105504
  102. Vasquez D, 2021, ANAL CHEM, V93, P11479, DOI 10.1021/acs.analchem.1c01637
  103. Vicini C, 2015, ACTA OTORHINOLARYNGO, V35, P157
  104. Vila PM, 2012, ANN SURG ONCOL, V19, P3534, DOI 10.1245/s10434-012-2351-1
  105. Chauhan SS, 2014, GASTROINTEST ENDOSC, V80, P928, DOI 10.1016/j.gie.2014.06.021
  106. Villard A, 2022, ORAL ONCOL, V127, DOI 10.1016/j.oraloncology.2022.105826
  107. Volgger V, 2013, CURR OPIN OTOLARYNGO, V21, P164, DOI 10.1097/MOO.0b013e32835df135
  108. Vonk J, 2021, ORAL DIS, V27, P21, DOI 10.1111/odi.13308
  109. Voskuil FJ, 2020, THERANOSTICS, V10, P3994, DOI 10.7150/thno.43227
  110. Weinstein GS, 2010, LARYNGOSCOPE, V120, P1749, DOI 10.1002/lary.21021
  111. Weyers BW, 2022, HEAD NECK-J SCI SPEC, V44, P1765, DOI 10.1002/hed.27078
  112. Weyers Brent W, 2019, Transl Biophotonics, V1, DOI 10.1002/tbio.201900017
  113. White H, 2013, JAMA OTOLARYNGOL, V139, P773, DOI 10.1001/jamaoto.2013.3866
  114. Woolgar JA, 2005, ORAL ONCOL, V41, P1034, DOI 10.1016/j.oraloncology.2005.06.008
  115. Yang EC, 2020, J MED IMAGING, V7, DOI 10.1117/1.JMI.7.5.054502
  116. Chen MM, 2014, OTOLARYNG HEAD NECK, V150, P968, DOI 10.1177/0194599814525747
  117. Yang EC, 2019, J BIOMED OPT, V24, DOI 10.1117/1.JBO.24.2.025003
  118. Yu AC, 2022, JAMA OTOLARYNGOL, V148, P1029, DOI 10.1001/jamaoto.2022.2840
  119. Yu HY, 2013, CA-CANCER J CLIN, V63, P45, DOI 10.3322/caac.21160
  120. Yu JS, 2021, CANCERS, V13, DOI 10.3390/cancers13236078
  121. Zhang YA, 2021, JAMA ONCOL, V7, DOI 10.1001/jamaoncol.2021.2907
  122. Zurek M, 2022, J CLIN MED, V11, DOI 10.3390/jcm11102752
  123. Clayburgh DR, 2016, ANN OTO RHINOL LARYN, V125, P37, DOI 10.1177/0003489415596754
  124. Cohan DM, 2009, CURR OPIN OTOLARYNGO, V17, P88, DOI 10.1097/MOO.0b013e32832984c0
  125. Cracchiolo JR, 2016, CANCER-AM CANCER SOC, V122, P1523, DOI 10.1002/cncr.29938
  126. de Koning KJ, 2022, ORAL ONCOL, V133, DOI 10.1016/j.oraloncology.2022.106023
  127. de Koning KJ, 2021, ORAL ONCOL, V116, DOI 10.1016/j.oraloncology.2021.105249
  128. de Koning SGB, 2020, BRIT J ORAL MAX SURG, V58, P285, DOI 10.1016/j.bjoms.2019.11.013
  129. de Wit JG, 2022, ORAL ONCOL, V134, DOI 10.1016/j.oraloncology.2022.106099
  130. Franca PDD, 2021, EUR J NUCL MED MOL I, V48, P3618, DOI 10.1007/s00259-021-05372-6
  131. Dik EA, 2014, ORAL ONCOL, V50, P611, DOI 10.1016/j.oraloncology.2014.02.014
  132. Dittberner A, 2021, FRONT ONCOL, V11, DOI 10.3389/fonc.2021.671880
  133. Dittberner A, 2016, HEAD NECK-J SCI SPEC, V38, pE1419, DOI 10.1002/hed.24253
  134. Fei BW, 2017, J BIOMED OPT, V22, DOI 10.1117/1.JBO.22.8.086009
  135. Ferris RL, 2022, J CLIN ONCOL, V40, P138, DOI 10.1200/JCO.21.01752
  136. Filauro M, 2021, EUR ARCH OTO-RHINO-L, V278, P2943, DOI 10.1007/s00405-020-06421-w