Genetic and clinical landscape of childhood cerebellar hypoplasia and atrophy

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Autores
SAKAMOTO, Masamune
IWAMA, Kazuhiro
SASAKI, Masayuki
ISHIYAMA, Akihiko
KOMAKI, Hirofumi
SAITO, Takashi
TAKESHITA, Eri
SHIMIZU-MOTOHASHI, Yuko
HAGINOYA, Kazuhiro
KOBAYASHI, Tomoko
Citação
GENETICS IN MEDICINE, v.24, n.12, p.2453-2463, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Purpose: Cerebellar hypoplasia and atrophy (CBHA) in children is an extremely heterogeneous group of disorders, but few comprehensive genetic studies have been reported. Comprehensive genetic analysis of CBHA patients may help differentiating atrophy and hypoplasia and potentially improve their prognostic aspects. Methods: Patients with CBHA in 176 families were genetically examined using exome sequencing. Patients with disease-causing variants were clinically evaluated. Results: Disease-causing variants were identified in 96 of the 176 families (54.5%). After excluding 6 families, 48 patients from 42 families were categorized as having syndromic associations with CBHA, whereas the remaining 51 patients from 48 families had isolated CBHA. In 51 patients, 26 aberrant genes were identified, of which, 20 (76.9%) caused disease in 1 family each. The most prevalent genes were CACNA1A, ITPR1, and KIF1A. Of the 26 aberrant genes, 21 and 1 were functionally annotated to atrophy and hypoplasia, respectively. CBHA+S was more clinically severe than CBHA-S. Notably, ARG1 and FOLR1 variants were identified in 2 families, leading to medical treatments. Conclusion: A wide genetic and clinical diversity of CBHA was revealed through exome sequencing in this cohort, which highlights the importance of comprehensive genetic analyses. Furthermore, molecular-based treatment was available for 2 families.
Palavras-chave
Cerebellar atrophy, Cerebellar hypoplasia, Disease-causing variants, Exome, Treatment
Referências
  1. Accogli A, 2021, CEREBELLUM, V20, P631, DOI 10.1007/s12311-020-01224-5
  2. Aldinger KA, 2019, AM J HUM GENET, V105, P606, DOI 10.1016/j.ajhg.2019.07.019
  3. Alves Cesar Augusto Pinheiro Ferreira, 2018, Top Magn Reson Imaging, V27, P275, DOI 10.1097/RMR.0000000000000175
  4. Beaudin M, 2019, CEREBELLUM, V18, P1098, DOI 10.1007/s12311-019-01052-2
  5. Beck DB, 2016, NEUROGENETICS, V17, P173, DOI 10.1007/s10048-016-0482-4
  6. Beckinghausen J, 2019, NEUROSCI LETT, V688, P2, DOI 10.1016/j.neulet.2018.05.013
  7. Buijsen RAM, 2019, NEUROTHERAPEUTICS, V16, P263, DOI 10.1007/s13311-018-00696-y
  8. Bushart DD, 2019, NEUROSCI LETT, V688, P41, DOI 10.1016/j.neulet.2018.02.005
  9. Chen J, 2009, NUCLEIC ACIDS RES, V37, pW305, DOI 10.1093/nar/gkp427
  10. Chen Z, 2018, BRAIN, V141, DOI 10.1093/brain/awy016
  11. Coutelier M, 2017, BRAIN, V140, P1579, DOI 10.1093/brain/awx081
  12. Dell'Orco JM, 2017, HUM MOL GENET, V26, P3935, DOI 10.1093/hmg/ddx281
  13. Fassio A, 2018, BRAIN, V141, P1703, DOI 10.1093/brain/awy092
  14. Guell X, 2018, NEUROIMAGE, V172, P437, DOI 10.1016/j.neuroimage.2018.01.082
  15. van Konijnenburg EMMH, 2021, ORPHANET J RARE DIS, V16, DOI 10.1186/s13023-021-01727-2
  16. Ibdali M, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18020473
  17. Kour S, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-22627-w
  18. Kury S, 2017, AM J HUM GENET, V101, P768, DOI 10.1016/j.ajhg.2017.10.003
  19. Ohba C, 2015, J HUM GENET, V60, P739, DOI 10.1038/jhg.2015.108
  20. Ohba C, 2013, NEUROGENETICS, V14, P225, DOI 10.1007/s10048-013-0375-8
  21. Pope S, 2019, J INHERIT METAB DIS, V42, P655, DOI 10.1002/jimd.12092
  22. Poretti A, 2008, EUR J PAEDIATR NEURO, V12, P155, DOI 10.1016/j.ejpn.2007.07.010
  23. Poretti A, 2015, NEUROPEDIATRICS, V46, P359, DOI 10.1055/s-0035-1564620
  24. Prestori F, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21010216
  25. Richards S, 2015, GENET MED, V17, P405, DOI 10.1038/gim.2015.30
  26. Riggs ER, 2020, GENET MED, V22, P245, DOI 10.1038/s41436-019-0686-8
  27. Saida K, 2021, CLIN GENET, V100, P722, DOI 10.1111/cge.14066
  28. Sakamoto M, 2022, HUM MOL GENET, V31, P69, DOI 10.1093/hmg/ddab224
  29. Schulz A, 2018, NEW ENGL J MED, V378, P1898, DOI 10.1056/NEJMoa1712649
  30. Seyama R, 2022, J HUM GENET, V67, P157, DOI 10.1038/s10038-021-00986-y
  31. Sin YY, 2015, J MOL MED, V93, P1287, DOI 10.1007/s00109-015-1354-3
  32. Sullivan R, 2019, J NEUROL, V266, P533, DOI 10.1007/s00415-018-9076-4
  33. Szklarczyk D, 2019, NUCLEIC ACIDS RES, V47, pD607, DOI 10.1093/nar/gky1131